Nitrogen form and root division modifies the nutrimental and biomolecules concentration in blueberry (Vaccinium corymbosum L.)

  • Oliver G. LEAL-AYALA Universidad Autónoma Agraria Antonio Narro, Departamento de Horticultura, Calzada Antonio Narro 1923, Saltillo, Coahuila, CP 25315 (MX)
  • Manuel SANDOVAL-VILLA Colegio De Postgraduados, Programa de Edafología, Montecillo, 56230 (MX) https://orcid.org/0000-0002-0228-0734
  • Libia I. TREJO-TÉLLEZ Colegio De Postgraduados, Programa de Edafología, Montecillo, 56230 (MX) https://orcid.org/0000-0003-3433-065X
  • Alberto SANDOVAL-RANGEL Universidad Autónoma Agraria Antonio Narro, Departamento de Horticultura, Calzada Antonio Narro 1923, Saltillo, Coahuila, CP 25315 (MX)
  • Marcelino CABRERA-DE LA FUENTE Universidad Autónoma Agraria Antonio Narro, Departamento de Horticultura, Calzada Antonio Narro 1923, Saltillo, Coahuila, CP 25315 (MX)
  • Adalberto BENAVIDES-MENDOZA Universidad Autónoma Agraria Antonio Narro, Departamento de Horticultura, Calzada Antonio Narro 1923, Saltillo, Coahuila, CP 25315 (MX) https://orcid.org/0000-0002-2729-4315
Keywords: ammonium; chlorophyll; nitrate; mineral nutrients; split root

Abstract

Blueberry (Vaccinium corymbosum L.) continues to gain importance in the international market due to its effects on the prevention of human diseases. This leads to the need to optimize the production and quality of the fruit. The present research evaluated the effect of NO3- and NH4+, using the split roots technique, in the nutritional status, photosynthetic pigments and total sugars in blueberry leaves. A completely random experiment was established with six greenhouse treatments: three under homogeneous root conduction (HR) and three with split roots (SR). The concentration of N, P, K, Ca, Mg, S, Fe, Cu, Zn, Mn, B and Na, chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids (Car) and total sugars were evaluated in the leaves. The exclusive supply of NH4+ led to the largest accumulation of N, P, Mg, S, Cu, Mn and B, compared to plants treated with NO3-. The Chla and total sugars were higher with NH4+ compared to NO3- nutrition. The supply of N separately (SR) had no positive effects on the evaluated variables, however, the SR with half of N, in the form of NH4+, compared to the non-SR with full application of N, has no differences in N-leaf concentration, which implies a higher use in the uptake or accumulation of this macro element in plant. V. corymbosum L. with split root and half of N in the form of NH4+, doubled the N use efficiency, as it matches in yield the complete supply treatment of N-NH4+ without root division.

Metrics

Metrics Loading ...

References

Alt DS, Doyle JW, Malladi A (2017). Nitrogen source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. Journal of Plant Physiology 216:79-87. http://dx.doi.org/10.1016/j.jplph.2017.05.014

Araya T, Noguchi K, Terashima I (2010). Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. Journal of Plant Research 123:371-379. http://dx.doi.org/10.1007/s10265-009-0279-8

Bar-Tal A, Aloni B, Karni L, Rosenberg R (2001). Nitrogen nutrition of greenhouse pepper. II. Effects of nitrogen concentration and NO3-: NH4+ ratio on growth, transpiration, and nutrient uptake. HortScience 36:1252-1259. http://dx.doi.org/10.21273/HORTSCI.36.7.1252

Bojovic B, Stojanovic J (2005). Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Archives of Biological Science 57:283-290.

Bryla DR, 2008. Water requirements of young blueberry plants irrigated by sprinklers, microsprays and drip. Acta Horticulturae 792:135-139. https://doi.org/10.17660/ActaHortic.2008.792.13

Bryla DR, Strik, BC, Banados MP, Righetti TL (2012). Response of highbush blueberry to nitrogen fertilizer during field establishment – II. plant nutrient requirements in relation to nitrogen fertilizer supply. HortScience 47:917-926. http://dx.doi.org/10.21273/HORTSCI.47.7.917

Bryla DR, Strik BC (2015). Nutrient requirements, leaf tissue standards, and new options for fertigation of northern high-bush blueberry. HortTechnology 25:464-470. https://doi.org/10.21273/HORTTECH.25.4.464

Casierra PF, Ávila LOF, Riascos ODH (2012). Cambios diarios del contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra [Daily changes in the content of photosynthetic pigments in marigold leaves under sun and shade]. Temas Agrarios 17:60-71. https://doi.org/10.21897/rta.v17i1.697

Castillo GAM, Avitia GE, Valdez ALA, Pineda PJ, Aguilar SS (2016). Dinámica nutrimental en hoja y fruto de arándano tipo Ojo de Conejo (Vaccinium ashei Reade) [Nutrient dynamics in leaf and fruit of rabbiteye blueberry (Vaccinium ashei Reade)]. Tecnociencia Chihuahua 10:64-71.

Crisóstomo MN, Hernández RO, López MJ, Manjarrez DC, Pinedo AA (2014). Ammonium/nitrate ratios in acid and alkaline solutions nutritious blueberry. Revista Mexicana de Ciencias Agrícolas 5:525-532. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342014000300016

Darnell RL, Hiss SA (2006). Uptake and assimilation of nitrate and iron in two Vaccinium species as affected by external nitrate concentration. Journal of the American Society for Horticultural Science 131:5-10. https://doi.org/10.21273/jashs.131.1.5

Darnell RL, Cruz HN (2011). Uptake and assimilation of nitrate and iron in cultivated and wild Vaccinium species. International Journal of Fruit Science 11:136-150. https://doi.org/10.1080/15538362.2011.578518

Dong C, Lu Y, Zhu Y, Zhou Y, Xu Y, Shen Q (2012). Effect of homogeneous and heterogeneous supply of nitrate and ammonium on nitrogen uptake and distribution in tomato seedlings. Plant Growth Regulation 68:271-280. http://dx.doi.org/10.1007/s10725-012-9715-1

Dubois M, Gilles KA, Hamilton JK, Robers PA, Smith F (1956). Colorimetric method for the determination of sugars and related substances. Analytical Biochemistry 28:350-356.

Gao Y, Tian Q and Zhang WH (2013). Systemic regulation of sulfur homeostasis in Medicago truncatula. Planta 239:79-96. http://dx.doi.org/10.1007/s00425-013-1958-1

González KL, Rugeles NL, Magnitskiy S (2018). Effect of different sources of nitrogen on the vegetative growth of Andean blueberry (Vaccinium meridionale Swartz). Agronomía Colombiana 36:58-67. http://dx.doi.org/10.15446/agron.colomb.v36n1.69304

Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillère JP (2007). Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine. Environmental Experimental Botany 59:139-149. http://dx.doi.org/10.1016/j.envexpbot.2005.11.002

Gregoriou K, Pontikis K, Vemmos S (2007). Effect of reduced irradiance on leaf morphology, photosyntetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica 45:172-181. http://dx.doi.org/10.1007/s11099-007-0029-x

Guo S, Shen Q, Brueck H (2007). Effects of local nitrogen supply on water uptake of bean plants in a split root system. Journal of Integrative Plant Biology 49:472-480.: http://dx.doi.org/10.1111/j.1744-7909.2007.00436.x

Habibi G, Ajory N (2015). The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. Journal of Plant Research 128:987-994. http://dx.doi.org/10.1007/s10265-015-0748-1

Hafeez B, Khanif YM, Saleem M (2013). Role of zinc in plant nutrition-a review. American Journal of Experimental Agriculture 3:374-391. http://dx.doi.org/10.5281/zenodo.8255

Hart J, Strik B, White L, Yang W (2006). Nutrient management for blueberries in Oregon. Oregon Station University Extension Service Publication EM 8918. Oregon State University, Corvallis, OR.

Howard LR, Clark JR, Brownmiller C (2003). Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. Journal of the Science of Food and Agriculture 83:1238-1247. http://dx.doi.org/10.1002/jsfa.1532

Husted S, Thomsen MU, Mattsson M, Schjoerring JK (2005). Influence of nitrogen and sulphur form on manganese acquisition by barley (shape Hordeum vulgare). Plant and Soil 268:309-317.

Jing J, Rui Y, Zhang F, Rengel Z, Shen J (2010). Localized application of phosphorus and ammonium improves growth of maize seedling by stimulating root proliferation and rhizosphere acidification. Field Crops Research 119:355-364.

Jorquera- Fontena E, Alberdi M, Reyes DM, Franck N (2016). Rearrangement of leaf traits with changing source-sink relationship in blueberry (Vaccinium corymbosum L.) leaves. Photosynthetica 54:1-10. http://dx.doi.org/10.1007/s11099-016-0207-9

Kang JG, van Iersel MW, Nemali K S (2004). Fertilizer concentration and irrigation method affect growth and fruiting of ornamental pepper. Journal of Plant Nutrition 27:867-884. http://dx.doi.org/10.1081/PLN-120030676

Kitaoka S, Koike T (2004). Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiologia Plantarum 121:604-611. http://dx.doi.org/10.1111/j.1399-3054.2004.00359.x

Kumar R, Mehrotra NK, Nautiyal BD, Kumar P, Singh PK (2009). Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). Journal of Environmental Biology 30:485-498. http://jeb.co.in/journal_issues/200907_jul09/paper_03.pdf

Lasa B, Frechilla S, Aleu M, González MB, Lamsfus C, Aparicio TPM (2000). Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant and Soil 225:167-174. https://doi.org/10.1023/A:1026568329860

Latsague M, Sáez P, Mora M (2014). Efecto de la fertilización con nitrógeno, fósforo y potasio, sobre el contenido foliar de carbohidratos, proteínas y pigmentos fotosintéticos en plantas de Berberidopsis corallina Hookf [Effect of the fertilization with nitrogen, phosphorus and potassium, on the foliar content of carbohydrates, proteins and photosynthetic pigments in plants of Berberidopsis coralline Hook.f.]. Gayana Botánica 71:37-42.

Lemoine R, La Camera S, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, … Durand M (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 24(4):272. http://dx.doi.org/10.3389/fpls.2013.00272

Li Y, Ren B, Ding L, Shen Q, Peng S, Guo S (2013). Does chloroplast size influence photosynthetic nitrogen use efficiency? PLoS One 8:62036. http://dx.doi.org/10.1371/journal.pone.0062036

Mancera MM, Soto JM, Sánchez E, Yáñez RM, Montes F, Balandrán RR (2007). Caracterización mineral de manzana ‘Red Delicious’ y ‘Golden Delicious’ de dos países productores [Mineral characterization of ‘Red Delicious’ and ‘Golden Delicious’ apple varieties from two producing countries]. Tecnociencia Chihuahua 1:6-17.

Marschner H (2012). Marschner’s Mineral nutrition of higher plants. Academic Press.

Martínez FE, Sarmiento J, Fischer G, Jiménez F (2008). Efecto de la deficiencia de N, P, K, Ca, Mg y B en componentes de producción y calidad de la uchuva (Physalis peruviana L.) [Effect of N, P, K, Ca, Mg and B deficiency on production and quality components of cape gooseberry (Physalis peruviana L.)]. Agronomía Colombiana 26:389-398.

Mengel K, Kirkby EA (2001). Principles of plant nutrition. Springer.

Miller BD, Hawkins BJ (2007). Ammonium and nitrate uptake, nitrogen productivity and biomass allocation in interior spruce families with contrasting growth rates and mineral nutrient preconditioning. Tree Physiology 27:901-909. https://doi.org/10.1093/treephys/27.6.901

Nagamatsu LY, Blanco LA, Délano FJ, Pimienta BE (2004). Light intensity and activity of trypsin inhibitors in amaranth leaves and seeds. Revista Fitotecnia Mexicana 27:127-132.

Ochmian I, Malinowski R, Kubus M, Malinowska K, Sotek Z (2019). The feasibility of growing’s highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Scientia Horticulturae 257:108690. https://doi.org/10.1016/j.scienta.2019.108690

Parra TS, Mendoza PG, Villarreal RM (2012). Relation nitrate / ammonium / urea and potassium concentration in hydroponic tomato production. Revista Mexicana de Ciencias Agrícolas 3:113-124. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342012000100008

Paul MJ, Foyer CH (2001). Sink regulation of photosynthesis. Journal of Experimental Botany 52:1383-1400. https://doi.org/10.1093/jexbot/52.360.1383

Qiang-Sheng Wu, Ming-Qin Cao, Ying-Ning Zou, Chu Wu, Xin-Hua He (2016). Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Scientia Horticulturae 199:95-102. http://dx.doi.org/10.1016/j.scienta.2015.12.039

Péret B, Clement M, Nussaume L, Desnos T (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16:442-450. http://dx.doi.org/10.1016/j.tplants.2011.05.006

Poonnachit U, Darnell RL (2004). Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Annals of Botany 93: 399-405. http://dx.doi.org/10.1093/aob/mch053

Salisbury FB, Ross CW (2000). Fisiología de las plantas. Desarrollo de las Plantas y Fisiología Ambiental. Editorial Paraninfo, Madrid.

Sánchez E, Ruiz MJ, Romero L, Preciado RP, Flores CMA, Márquez QC (2018). Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo, y potasio en frijol ejotero? [Are photosynthetic pigments good indicators of the nitrogen-phosphorus- potassium nutritional state in beans?]. Ecosistemas y Recursos Agropecuarios 5:387-398.

Sanclemente MA, Peña EJ (2008). Crecimiento y la eficiencia fotosintética de Ludwigia decurrens Walter (Onagraceae) bajo diferentes concentraciones de nitrógeno [Growth and photosynthetic efficiency of ludwigia decurrens walter (Onagraceae) under different concentrations of nitrogen]. Revista Acta Biológica Colombiana 13:175-186.

Shabnam R, Tarek MH, Iqbal MT (2018). Understanding phosphorus dynamics in wheat plant and growth response in a split-root system in acid soil. Agriculture and Natural Resources 52(3):259-265. https://dx.doi.org/10.1016/j.anres.2018.09.006

SIAP (2018). Atlas agroalimentario [Agri-food atlas]. Retrieved 2019 September 10 from

https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2018/Atlas-Agroalimentario-2018

Sotiropoulos TE, Therios IN, Dimassi KN (2003). Boron toxicity in kiwifruit plants (Actinidia deliciosa), treated with nitrate, ammonium, and a mixture of both. Journal of Plant Nutrition and Soil Science 166:529-532. http://dx.doi.org/10.1002/jpln.200320264

Steiner AA (1984). The universal nutrient solution. In: Proceedings of Sixth International Congress on Soilless Culture. International Society for Soilless Culture. Lunteren, The Netherlands pp 633-649.

Stratton ML, Good GL, Barker AV (2001). The effects of nitrogen source and concentration on the growth and mineral composition of privet. Journal of Plant Nutrition 24:1745-1772. http://dx.doi.org/10.1081/PLN-100107310

Szczerba MW, Britto DT, Kronzucker HJ (2006). Rapid, futile K+ cycling and pool-size dynamics define low-affinity potassium transport in barley. Plant Physiology 141:1494-1507. https://doi.org/10.1104/pp.106.082701

Trejo Téllez LI, Gómez-Merino FC, Rodríguez-Mendoza MN, Alcántar-González G (2005). Fertilización foliar con urea en la partición de nitrógeno en espinaca. Terra Latinoamericana 23:495-503.

Walch-Liu P, Neumann G, Engels C (2001). Response of shoot and root growth to supply of different nitrogen forms is not related to carbohydrate and nitrogen status of tobacco plants. Journal of Plant Nutrition and Soil Science164:97-103. https://doi.org/10.1002/1522-2624(200102)164:1<97::AID-JPLN97>3.0.CO;2-Z

Watanabe M, Hoshika Y, Inada N, Koike T (2018). Photosynthetic activity in relation to a gradient of leaf nitrogen content within a canopy of Siebolds beech and Japanese oak sapling under elevated ozone. Science of the Total Environment 636:1455-1462. https://doi.org/10.1016/j.scitotenv.2018.04.423

Watson M, Galliher T (2002). Comparison of Dumas and Kjeldahl methods with automatic analyzer on agricultural samples under routine rapid analysis conditions. Communications in Soil Science and Plant Analysis 32:2007-2019. https://doi.org/10.1081/CSS-120000265

Xu GH, Wolf S, Kafkafi U (2001). Effect of varying nitrogen form and concentration during growing season on sweet pepper flowering and fruit yield. Journal of Plant Nutrition 24:1099-1116. https://doi.org/10.1081/PLN-100103806

You Q, Wang B, Chen E, Huang Z, Wang X, Luo PG (2011). Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chemistry 125:201-208. https://doi.org/10.1016/j.foodchem.2010.08.063

Zhu Y, Ito T (2000). Effects of nutrient stress by split-root system on the growth and K, Ca, and Mg contents at different stages of hydroponically-grown tomato seedlings. Engei Gakkai Zasshi. Journal of the Japanese Society for Horticultural Science 69:677-683. https://doi.org/10.2503/jjshs.69.677

Published
2021-03-19
How to Cite
LEAL-AYALA, O. G., SANDOVAL-VILLA, M., TREJO-TÉLLEZ, L. I., SANDOVAL-RANGEL, A., CABRERA-DE LA FUENTE, M., & BENAVIDES-MENDOZA, A. (2021). Nitrogen form and root division modifies the nutrimental and biomolecules concentration in blueberry (Vaccinium corymbosum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 11998. https://doi.org/10.15835/nbha49111998
Section
Research Articles
CITATION
DOI: 10.15835/nbha49111998