Evaluation of mitotic activity in tapetal cells of grapevine (Vitis L.)
DOI:
https://doi.org/10.15835/nbha49211975Keywords:
grapevine varieties, mitotic activity, mitotic chromosomes, tapetum, VitisAbstract
The knowledge with reference to the grapevine tapetum has been centered on its anatomy/morphology and hardly anything at all is known about its mitotic activity throughout the microsporogenesis. The aim of this study was to ascertain the mitotic activity in tapetal cells of some grapevines (Vitis L.) broadening knowledge about this tissue and simultaneously corroborating the viability of its use as an alternative tissue for further cytogenetic studies. Young buds of 12 grapevine varieties at different meiotic stages were squashed and tapetal cells a prometaphase/metaphase scored in each meiotic stage. Mitotic activity was observed since the beginning of microsporogenesis, where it was more intense, decreasing toward tetrad. Polyploid tapetal cells arose through endomitosis while the microsporogenesis advanced. Two types of polyploid cells were evidenced, those with two or more individualized diploid chromosome groups and those with only one polyploid group. The percentage of diploid cells and of polyploid cells with two or more individualized diploid groups was higher during the first stage of microsporogenesis, though decreasing and giving way to cells with one large polyploid group as microsporogenesis moved toward tetrad. The nucleolus number was scored at interphase at different stages. Two and four nucleoli prevailed in tapetal cells at all stages except at tetrad where one large nucleolus was seen. The results showed that despite of the squashing technique applied, grapevine tapetum has a substantial amount of cells with mitotic activity with a satisfactory chromosome spreading therefore establishing an interesting alternative and promising tissue for later cytomolecular studies.
References
Avanzi MG (1950). Endomitosi e mitosi a diplocromosomi nello sviluppo delle cellule del tappeto di Solanum tuberosum L. [Endomitosis and mitosis with diplochromosomes during the development of the tapetal cells in Solanum tuberosum L.]. Caryologia 2(2):205-222. https://doi.org/10.1080/00087114.1950.10797139
Battaglia E (1949). Agglutinazione cromossomica (“stickiness”) quale causa di eccezionali condizioni nucleari nelle cellule del tappeto di Crepis zacintha (L.) Babc. [Abnormal nuclear conditions induced by chromosome agglutination (“stickiness”) in the tapetal cells of Crepis zacintha (L.) Babc.] Caryologia 1(2):248-268. https://doi.org/10.1080/00087114.1949.10797511
Branas M (1932). Sur la caryologie des Ampélideés. [About the caryology of Ampalideae]. Comptes Rendus de l’Académie des Sciences, sér. III, Sciences de la Vie 194:121-123. http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-3147&M=pagination
Brown SW (1949). Endomitosis in the tapetum of tomato. American Journal of Botany 36(10):703-716. https://doi.org/10.1002/j.1537-2197.1949.tb05324.x
Büyükkartal HN, Çölgeçen H, Marasal B (2005). Development of anther wall throughout microsporogenesis in Vitis vinifera L. cv. Çavus. International Journal of Agriculture & Biology 7(4):616-620. http://www.ijabjass.org
Castro C, Carvalho A, Pavia I, Leal F, Moutinho-Pereira J, Lima-Brito J (2018). Nucleolar activity and physical location of ribosomal DNA loci in Vitis vinifera L. by silver staining and sequential FISH. Scientia Horticulturae 232:57-62. https://doi.org/10.1016/j.scienta.2017.12.064
Chebotaru AA (2002). Tapetum: ultrastructural aspects. In: Batygina TB (Ed). Embryology of Flowering Plants: Terminology and Concepts, Vol. 1 Generative Organs of Flower. Science Publishers Inc., Enfield, pp 25-29. https://doi.org/10.1201/9781482279917
Chromosome Counts Data Base (CCDB) (2021). Vitis L. genus. Retrieved 2021 April 27 from http://ccdb.tau.ac.il/Angiosperms/Vitaceae/Vitis/
Cochetel N, Minio A, Massonnet M, Vondras AM, Figueroa-Balderas R, Cantu D (2021). Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence. Genes Genome Genetics 11(4):1-11. https://doi.10.1093/g3journal/jkab033
Dorsey MJ (1914). Pollen development in the grape with special reference to sterility. Bulletin 144. University of Minnesota, St Paul. Retrieved from the University of Minnesota Digital Conservancy. http://hdl.handle.net/11299/183965
Feng X, Dickinson HG (2010). Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development 137:2409-2416. https://doi.org/10.1242/dev.049320
Forino LMC, Andreucci AC, Del Tredici I, Felici C, Giraldi E, Tagliasacchi AM (2002). DNA methylation of tapetum cells during microsporogenesis in Malus domestica Borkh. Israel Journal of Plant Science 51(2):91-100. https://doi.org/10.1560/8THY-K0P8-4V15-QCHQ
Frawley LE, Orr-Weaver TL (2015). Polyploidy. Current Biology 25(9):R345-361. https://doi.org/10.1016/j.cub.2015.03.037
Gentcheff G, Gustafsson Å (1940). The balance system of meiosis in Hieracium. Hereditas 26(1-2):209-249. https://doi.org/10.1111/j.1601-5223.1940.tb03233.x
Ghimpu V (1929). Sur les chromosomes de Vitis, Medicago et Hordeum [About the chromosomes of Vitis, Medicago and Hordeum]. Comptes Rendus de l’Association des Anatomistes 1(1):243-247. https://gallica.bnf.fr/ark:/12148/bpt6k432673g f290.item
Hickey CC, Smith ED, Shanshan C, Conner P (2019). Muscadine (Vitis rotundifolia Michx., syn. Muscadinia rotundifolia (Michx.) Small): the resilient, native grape of the Southeastern U.S. Agricultura 9(6):1-13. https://doi.org/10.3390/agriculture9060131
Howell WM, Black DA (1980). Controlled silver-staining of nucleolus organized regions with a protective colloidal developer: a 1-step method. Experientia 36(8):1014-1015. https://doi.org/10.1007/BF01953855
Iwata E, Ikeda S, Matsunaga S, Kurata M, Yoshioka Y, Criqui M-R, ... Ito M (2011). GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. The Plant Cell 23(12):4382-4393. https://doi.org/10.1105/tpc.111.092049
Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T, … Barak S (2014). The Arabidopsis STRESS RESPONSE SUPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. The Plant Journal 79(1):28-43. https://doi.org/10.1111/tpj.12533
Kalinina NO, Makarova S, Makhotenko A, Love AJ, Taliansky M (2018). The multiple functions of the nucleolus in plant development, disease and stress responses. Frontiers in Plant Science 09:132 https://doi.org/10.3389/fpls.2018.00132
Konyar ST, Dane F (2013). Anther ontogeny in Campsis radicans (L.) Seem. (Bignoniaceae). Plant Systematics and Evolution 299(3):567-583. https://doi.org/10.1007/s00606-012-0743-0
Kuliyev VM (2020). The study of polyploid mutant forms of grapes. Cytology & Histology International Journal 4(1):1-6. https://medwinpublishers.com/CHIJ/CHIJ16000119
Lei X, Liu B (2020). Tapetum-dependent male meiosis progression in plants: increasing evidence emerges. Frontiers in Plant Science 10:1667 https://doi.org/10.3389/fpls.2019.01667
Leitch AR (2000). Higher levels of organization in the interphase nucleus of cycling and differentiated cells. Microbiology and Molecular Biology Review 64(1):138-152. https://doi.org./10.1128/mmbr.64.1.138-152.2000
Li D-D, Xue J-S, Zhu J, Yang Z-N (2017). Gene regulatory network for tapetum development in Arabidopsis thaliana. Frontiers in Plant Science 8:1559. https://doi.org/10.3389/fpls.2017.01559
Liu Z, Shi X, Li S, Hu G, Zhang L, Song X (2018). Tapetal-delayed programed cell death (PCD) and oxidative stress-induced male sterility of Aegilopis uniaristata cytoplasm in wheat. International Journal of Molecular Science 19:1708 https://doi.org/10.3390/ijms.19061708
Malallah GA, Afzal M, Attia TA, Abraham D (1996). Tapetal cell nuclear characteristics of some Kuwait plants. Cytologia 61(3):259-267. https://doi.org/10.1508/cytologia.61.259
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T (2013). New insights into the dynamics of plant cell nuclei and chromosomes. International Review of Cell and Molecular Biology 305:253-301. http://dx.doi.org/10.1016/B978-0-12-407695-2.00006-8
Maul E, Sudharma KN, Ganesh A, Hundemer M, Kecke S, Marx G, … Brühl U (2021). Vitis International Variety Catalogue (VIVC). Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Grapevine Breeding - Geilweilerhof (ZR). Retrieved 2021 April 20 from https://www.vivc.de/index.php?r=site%2Findex.
Murgia M, Charzynska M, Rougier, Cresti M (1991). Secretory tapetum of Brassica oleraceae L.: polarity and ultrastructural features. Sexual Plant Reproduction 4(1):28-35. https://doi.org/10.1007/BF00194568
Nebel BR (1929). Chromosome counts in Vitis and Pyrus. The American Naturalist 63(685):188-189. https://doi.org/10.1086/280251
Oksala T, Therman E (1977). Endomitosis in tapetal cells of Eremurus (Liliaceae). American Journal of Botany 64(7):866-872. https://doi.org/10.1002/j.1537-2197.1977.tb11929.x|
Olmo HP (1937). Chromosome numbers in the European grape (Vitis vinifera). Cytologia 2:606-613. https://doi.org/10.1508/cytologia.FujiiJubilaei.606
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura KI (2018). EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. Public Library of Science (PLOS) Genetics 15(3):e1008033. https://doi.org/10.1371/journal.pgen.1008033
Pacini E (1997). Tapetum character states: analytical keys for tapetum types and activities. Canadian Journal of Botany 75(9):1448-1459. https://doi.org/10.1139/b97-859
Patel GI, Olmo HP (1955). Cytogenetics of Vitis: I. The hybrid V. vinifera X V. rotundifolia. American Journal of Botany 42(2):141-159. https://doi.org/10.1002/j.1537-2197.1955.tb11106.x
Patil SG, Patil VP (1992). Karyomorphology of Vitis vinifera, V. rotundifolia and their hybrid. Cytologia 57(1):91-95. https://doi.org/10.1508/cytologia.57.91
Pierozzi NI (2011). Karyotype and NOR-banding of mitotic chromosomes of some Vitis L. species. Revista Brasileria de Fruticultuta 1:564-570. https://doi.org/10.1590/S0100-29452011000500077
Pierozzi NI, Moura MF (2019). Cytological investigation in two mutants of the hybrid grapevine ‘Niagara’. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(3):913-920. https://doi.org/10.15835/nbha47311470
Pimentel-Gomes F, Garcia CH(2002). Estatística aplicada a experimentos agronômicos e florestais [Statistics applied to agronomic and forestry experiments]. FEALQ, Piracicaba.
Pinto-Maglio CAF, Pommer CV, Pierozzi NI (2010). Giemsa staining and fluorescent chromosome banding in some Vitis L. species. Caryologia 63(4):339-348. https://doi.org/10.1080/00087114.2010.10589744
Quilichini TD, Douglas CJ, Samuels AL (2014). New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Annals of Botany 114(6):1189-1201. https://doi.org/10.1093/aob/mcu042
Raj AS, Seethaiah L (1969). Karyotype analysis and meiosis studies in three varieties of grape (Vitis vinifera L.). Cytologia 34(3):475-483. https://doi.org/10.1508/cytologia.34.475
Raj AS, Seethaiah L (1973). Cytological studies in grape (Vitis vinifera L.). Cytologia 38(4):549-557. https://doi.org/10.1508/cytologia.38.549
Sharma SK, Kumaria S, Tandon P, Rao SR (2012). Endomitosis in tapetal cells of some Cymbidiums (Orchidaceae). The Nucleus 55(1):21-25. https://doi.org/10.1007/s13237-012-0049-1
Shetty BV, Raman VS (1960). Chromosome numbers in Vitaceae. Current Science 29(7):279-280 https://www.jstor.org/stable/24214346
Smertenko A (2018). Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. Current Opinion in Plant Biology 46:130-137. https://doi.org/10.1016/j.pbi.2018.07.011
Solís MT, Chakabarti N, Corredor E, Cortés-Eslava J, Rodríguez-Serrano M, Biggiogena, ... Testillano OS (2013). Epigenetic changes accompany developmental programmed cell death in tapetum cells. Plant and Cell Physiology 55(1):16-29. https://doi.org./10.1093/pcp/pct152
Takusagawa H (1952). Chromosome numbers of the Vitaceae. Japanese Journal of Genetics 27(1-2):22-24. https://doi.org/10.1266/jjg.27.22
Taliansky ME, Brown JWS, Rajamäki ML, Valkonen JPT, Kalinina NO (2010). Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Advances in Virus Research 77:119-158. https://doi.org/10.1016/B978-0-12-385034-8.00005-3
Testillano P, Gonzalez-Melendi S, Fado B, Sanchez-Pena A, Omedilla A, Risueño MC (1993). Immunolocalization of nuclear antigens and ultrastructural cytochemistry on tapetal cells of Scilla peruviana and Capsicum annuum. In: Hesse H, Pacini E, Willensen M (Eds). The Tapetum: Cytology, Function, Biochemistry and Evolution. Plant Systematics and Evolution Supplementum 7 Springer-Verlag, Wien, pp 75-90. https://doi.org/10.1007/978-3-7091-6661-1_7
The Plant List (2013). Version 1.1. Published on the Internet. Retrieved 2021 May 03 from http://www.theplantlist.org/
Viljoen TA, Spies JJ (1995). Cytogenetical studies of three Vitis species. Vitis 34(4):221-224. https://doi.org/10.5073/vitis.1995.34.221-224
Weingartner M, Criqui M-C, Mészáros T, Binarova P, Schmit A-C, Helfer A, … Genschik P (2004). Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplast. The Plant Cell 16(3):643-657. https://doi.org/10.1105/tpc.020057
Weiss H, Maluszynska J (2001). Molecular cytogenetic analysis of polyploidization in the anther tapetum of diploid and autotetraploid Arabidopsis thaliana plants. Annals of Botany-London 87(6):729-735. https://doi.org/10.1006/anbo.2001.1402
Witkus ER (1945). Endomitotic tapetal cell divisions in Spinacia. American Journal of Botany 32(6):326-330. https://doi.org/10.2307/2437165
Zhai J, Zhang H, Arikit S, Huang K, Nan G-L, Walbot V, Meyers BC (2015). Spatiotemporally dynamic, cell-type dependent premeiotic and meiotic phasiRNAs in maize anthers. Proceedings of the National Academy of Science of the United States of America 112(10):3146-3151. https://doi.org/10.1073/pnas.1418918112
Zheng H, Yu X, Yuan Y, Zhang Y, Zhang Z, Zhang J, …Tao J (2016). The VviMYB80 gene is abnormally expressed in Vitis vinifera L. cv. ‘Zhong Shan Hong’ and its expression in tobacco driven by the 35S promoter causes male sterility. Plant and Cell Physiology 57(3):540-557. https://doi.org/10.1093/pcp/pcw011

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Notulae Botanicae Horti Agrobotanici Cluj-Napoca

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.