Effect of mycorrhizal inoculations on physiological traits and bioactive compounds of tomato under water scarcity in field conditions


  • Kitti Z. HORVÁTH Szent István University, Faculty of Agricultural and Environmental Science, Institute of Horticulture, H-2100 Gödöllő, Páter K. Street 1 (HU)
  • Bulgan ANDRYEI Szent István University, Faculty of Agricultural and Environmental Science, Institute of Horticulture, H-2100 Gödöllő, Páter K. Street 1 (HU)
  • Lajos HELYES Szent István University, Faculty of Agricultural and Environmental Science, Institute of Horticulture, H-2100 Gödöllő, Páter K. Street 1 (HU)
  • Zoltán PÉK Szent István University, Faculty of Agricultural and Environmental Science, Institute of Horticulture, H-2100 Gödöllő, Páter K. Street 1 (HU)
  • András NEMÉNYI Szent István University, Faculty of Agricultural and Environmental Science, Institute of Horticulture, H-2100 Gödöllő, Páter K. Street 1 (HU)
  • Eszter NEMESKÉRI Szent István University, Faculty of Agricultural and Environmental Science, Institute of Horticulture, H-2100 Gödöllő, Páter K. Street 1 (HU)




arbuscular mycorrhiza; carotenoids; chlorophyll fluorescence; tomato; water stress


Mycorrhizal inoculations were investigated to reveal their effects on the growth and productivity of processing tomato grown under field conditions. Plants inoculated at sowing (M1), sowing + transplanting (M2) and non-inoculated plants (M0) were grown under regularly irrigated (RI), deficit irrigated (DI), and non-irrigated (I0) conditions. In dry years, under non-irrigated conditions (M2) treatment significantly decreased the canopy temperature, improved the photosynthetic efficiency expressed by chlorophyll fluorescence (Fv/Fm) and the fruit setting, significantly increased the total carotenoids and lycopene concentration of fruits but increased the ratio of green yield. Using deficit irrigation, (M2) plants produced more and larger weighed red fruits than (M1) plants but the β carotene, lutein and lycopene concentration of fruits, except for the vitamin C, decreased. Under severe drought conditions the mycorrhizal inoculations positively influenced the all carotenoids and lycopene concentration of fruits (r = 0.8150, r = 0.7837), but their impact was negative under deficit irrigation. Under water deficiency (I0, DI) the mycorrhizal symbiosis increased the marketable yield and resulted in a 33% increase in green yield and an 18 % increase in the total carotenoids content in dry years but the unmarketable yield decreased. Under water deficiency (M2) treatment produce more marketable yield resulting in 9.8% higher total carotenoids in the tomato fruits than (M1) treatment under field conditions.


Agarwal S, Rao AV (2000). Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal 163(6):739-744.

Agbna GHD, Dongli S, Zhipeng L, Elshaikh NA, Guangcheng S, Timm LC (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae 222:90-101. https://doi.org/10.1016/j.scienta.2017.05.004

Augé RM (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3-42. https://doi.org/10.1007/s005720100097

Bakr J, Daood HG, Pék Z, Helyes L, Posta K (2017). Yield and quality of mycorrhized processing tomato under water scarcity. Applied Ecology and Environmental Research 15(1):401-413. https://doi.org/10.15666/aeer/1501_401413

Bakr JA (2018). Arbuscular Mycorrhizae fungi role in tomato (L. esculentum Mill.) production under water scarcity conditions PhD Thesis. Szent István University, Gödöllő (Hungary).

Baranska M, Schütze W, Schulz H (2006). Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Analitical Chemistry 78(24):8456-8461. https://doi.org/10.1021/ac061220j

Battilani A, Prieto H, Argerich C, Campillo C, Cantore V (2012). Tomato. In: Crop yield response to water. In: Steduto P, Hsiao TC, Fereres E, Raes D (Eds.) FAO irrigation and drainage paper 66; Food and Agriculture Organization of the United Nations: Rome, Italy, pp 192-198.

Bitterlich M, Sandmann M, Graefe J (2018). Arbuscular mycorrhiza alleviates restrictions to substrate water flaw and delays transpiration limitation to stronger drought in tomato. Front Plant Science 9:154. https://doi.org/10.3389/fpls.2018.00154

Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Berta G (2017). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27(1):1-11. https://doi.org/10.1007/s00572-016-0727-y

Candido V, Campanelli G, D’Addabbo T, Castronuovo D, Perniola M, Camele I (2015). Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes. Scientia Horticulturae (Amsterdam) 187:35-43.

Chaudhary P, Sharma A, Singh B, Nagpal A (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology 55(8):2833-2849. https://doi.org/10.1007/s13197-018-3221-z

Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Guerrieri E (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology 171:1009-1023. https://doi.org/10.1104/pp.16.00307

Cuenca G, Lovera M (2010). Seasonal variation and distribution at different soil depths of arbuscular mycorrhizal fungi spores in a tropical Sclerophyllous shrubland. Botany 88:54-64. https://doi.org/10.1139/B09-100

Daood HG, Biacs PA, Dakar MA, Hajdu F (1994). Ion-pair chromatography and photodiode-array detection of vitamin C and organic acids. Journal of Chromatographic Science 32(11):481-487.

Daood HG, Bencze G, Palotas G, Pek Z, Sidikov A, Helyes L (2014). HPLC Analysis of carotenoids from tomatoes using cross-linked C18 column and MS detection. Journal of Chromatographic Science 52(9):985-991. https://doi.org/10.1093/chromsci/bmt139

Dharmapuria S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Guiliano G (2002). Metabolic engineering of xanthophyll content in tomato fruits. FEBS Letters 519:30-34. https://doi.org/10.1016/s0014-5793(02)02699-6

Duc NH, Csintalan ZS, Posta P (2018). Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiology and Biochemistry 132:297-307. https://doi.org/10.1016/j.plaphy.2018.09.011

Ebrahim MKH, Saleem AR (2017). Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. Journal of Taibah University for Science 11(6):850-860. https://doi.org/10.1016/j.jtusci.2017.02.002

Favati F, Lovelli S, Galgano F, Miccolis V, Di Tommaso T, Candido V (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae 122:562-571. https://doi.org/10.1016/j.scienta.2009.06.026

Frede K, Ebert F, Kipp AP, Schwerdtle T, Baldermann S (2017). Lutein activates the transcription factor Nrf2 in human retinal pigment epithelial cells. Journal of Agricultural and Food Chemistry 65(29):5944-5952. https://doi.org/10.1021/acs.jafc.7b01929

Frew A, Price JN (2019). Mycorrhizal-mediated plant-herbivore interactions in a high CO2 world. Functional Ecology 33:1376-1385. https://doi.org/10.1111/1365-2435.13347

Frew A, Powell JR, Johnson SN (2020). Aboveground resource allocation in response to root herbivory as affected by the arbuscular mycorrhizal symbiosis. Plant and Soil 447:463-473. https://doi.org/10.1007/s11104-019-04399

Giovannetti M, Mosse B (1980). An evaluation of the techniques for measuring vesicular arbuscular mycorrhizal infections in roots. New Phytologist 84:489-500. https://www.jstor.org/stable/2432123

Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Scarpato R (2012). Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition 107:242-251. https://doi.org/10.1017/S000711451100290X

Giuliani MM, Gatta G, Cappelli G, Gagliardi A, Donatelli M, Fanchini D, Bregaglio S (2019). Identifying the most promising agronomic adaptation strategies for the tomato growing systems in Southern Italy via simulation modelling. European Journal of Agronomy 111:2019125937 https://doi.org/10.1016/j.eja.2019.125937

Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 2:359-376. https://doi.org/10.1007/s00572-014-0617-0

Helyes L, Lugasi A, Pék Z (2007). Effect of natural light on surface temperature and lycopene content of vine ripened tomato fruit. Canadian Journal of Plant Science 87:927-929. https://doi.org/10.4141/CJPS07022

Helyes L, Lugasi A, Pék Z (2012). Effect of irrigation on processing tomato yield and antioxidant components. Turkish Journal of Agriculture and Forestry 36:702-709. https://doi.org/10.3906/tar-1107-9

Helyes L, Szerdahelyi R, Pék Z (2000). Appreciation of fruit set dynamics in autumn tomato forcing. Acta Agronomica Óváriensis 42(2):225-232.

Leyva-Morales R, Gavito ME, Carrillo-Saucedo SM (2019). Morphological and physiological responses of the external mycelium of Rhizophagus intraradices to water stress. Mycorrhiza 29:141-147. https://doi.org/10.1007/s00572-019-00880-8

Lira LQ, de Souza AF, Amancio ADM, Bezerra CG, Pimentel JB, Moia MN, Dimenstein R (2018). Retinol and beta carotene status in mother-infant dyads and associations between them. Annals of Nutrition Metabolism 72:50-56.

Lugo MA, Cabello MN. 2002. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94(4):579-586. https://doi.org/10.2307/3761709

Nagy Z, Daood H, Neményi A, Ambrózy Z, Pék Z, Helyes L (2017). Impact of shading net color on phytochemical contents in two chilli pepper hybrids cultivated under greenhouse conditions. Horticultural Science and Technology 35:418-430.

Nemeskéri E, Neményi A, Bőcs A, Pék Z, Helyes L (2019a). Physiological factors and their relationship with the productivity of processing tomato under different water supply. Water 11(3):586. https://doi.org/10.3390/w11030586

Nemeskéri E, Horváth K, Pék Z, Helyes L (2019b). Effect of mycorrhizal and bacterial products on the traits related to photosynthesis and fruit quality of tomato under water deficiency conditions. Acta Horticulturae 1233(1):61-66 https://doi.org/10.17660/ActaHortic.2019.1233.10

O’Callaghan M (2016). Microbial inoculation of seed for improved crop performance: Issues and opportunities. Applied Microbiology and Biotechnology 100:5729-5746.

Pék Z, Szuvandzsiev P, Neményi A, Tuan LA, Bakr J, Nemeskéri E, Helyes L (2019). Comparison of a water supply model with six seasons of cherry type processing tomato. Acta Horticulturae. 1233(1):41-46. https://doi.org/10.17660/ActaHortic.2019.1233.7

Rillig MC, Aguilar‐Trigueros CA, Bergmann J, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist 205:1385-1388. https://doi.org/10.1111/nph.13045

Rillig MC, Aguilar-Trigueros CA, Camenzind T, Camenzind T, Cavagnaro TR, Degrune F, Yang G (2019). Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist 222:1171-1175. https://doi.org/10.1111/nph.15602

Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytologist 220:1322-1336. https://doi.org/10.1111/nph.15295

Rocha I, Duarte I, Ma Y, Souza-Alonso P, Aleš Látr A, Vosátka M, Oliveira RS (2019). Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9(8):471. https://doi.org/10.3390/agronomy9080471

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, … Colla G (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196:91-108. https://doi.org/10.1016/j.scienta.2015.09.002

Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology 167:862-869. https://doi.org/10.1016/j.jplph.2010.01.018

Salvioli A, Novero M, Lacourt I, Bonfante P (2008). The impact of mycorrhizal symbiosis on tomato fruit quality. 16th IFOAM Organic World Congress, Modena, Italy, June 16-20, 2008 Archived at http://orgprints.org/view/projects/conference.html

Shi J, Le Maguer M (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition 40(1):1-42. https://doi.org/10.1080/07388550091144212

Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Jürgen V (2015). Climate of the Carpathian Region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology 35:1322-1341. https://doi.org/10.1002/joc.4059

Steiner BM, McClements DJ, Davidov-Pardo G (2018). Encapsulation systems for lutein: A review. Trends in Food Science and Technology 82:71-81.

Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae 107:245-253. https://doi.org/10.1016/j.scienta.2005.07.006

Tan JS, Wang JJ, Flood V, Rochtchina E, Smith V, Mitchell P (2008). Dietary antioxidants and the long-term incidences of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 115(2):334-341. https://doi.org/10.1016/j.ophtha.2007.03.083

Xie MM, Zhang YC, Liu LP, Zou YN, Wu QS, Kuča (2019). Mycorrhiza regulates signal substance levels and pathogen defence gene expression to resist citrus canker. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(4):1161-1167. https://doi.org/10.15835/nbha47411561




How to Cite

HORVÁTH, K. Z., ANDRYEI, B. ., HELYES, L., PÉK, Z., NEMÉNYI, A., & NEMESKÉRI, E. (2020). Effect of mycorrhizal inoculations on physiological traits and bioactive compounds of tomato under water scarcity in field conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1233–1247. https://doi.org/10.15835/nbha48311963



Research Articles
DOI: 10.15835/nbha48311963

Most read articles by the same author(s)