Molecular and phytochemical characterization of F1 Streptocarpus hybrids and antioxidant potential of their flower extracts

Authors

  • Monica HȂRŢA University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Life Sciences Institute Regele Mihai I, 3-5 Mănăștur, 400372, Cluj-Napoca (RO) https://orcid.org/0000-0002-3329-5269
  • Doru PAMFIL University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Life Sciences Institute Regele Mihai I, 3-5 Mănăștur, 400372, Cluj-Napoca (RO)
  • Orsolya BORSAI AgroTransilvania Cluster, Dezmir, Apahida, Crișeni St. FN, Cluj, 407039 (RO) https://orcid.org/0000-0002-8287-0637
  • Rodica POP University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Horticulture, 3-5 Mănăștur, 400372, Cluj-Napoca, Cluj (RO)
  • Doina CLAPA University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Intitute of Advanced Horticulture Research of Transylvania, 3-5 Mănăștur, 400372, Cluj-Napoca, Cluj (RO)
  • Zoriţa DIACONEASA University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Food Science and Technology, 3-5 Mănăștur, 400372, Cluj-Napoca, Cluj (RO)
  • Cristian R. SISEA University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Horticulture, 3-5 Mănăștur, 400372, Cluj-Napoca, Cluj (RO)

DOI:

https://doi.org/10.15835/nbha48311959

Keywords:

ABTS; antioxidants; anthocyanins; cape primrose; DNA; flower; isovitexin; RAPD

Abstract

Streptocarpus x hybridus is a very popular houseplant with colourful flowers arousing thus the interest of plant breeders. Its potential value is even higher since different chemical compounds could be identified and used for food and pharmaceutical industries. Therefore, the objectives of this study were: to determine genetic relationships between twelve F1 Streptocarpus hybrids and their genitors; to determine the total phenolic and flavonoid content; to evaluate the antioxidant activity of the analysed individuals. Although 12 out of the 24 RAPD primers detected polymorphism among the individuals, the UPGMA dendrogram did not show a very clear grouping pattern for flower colour. In contrast, the phytochemical dendrogram shed more light on the dissimilarities among Streptocarpus flowers in terms of their polyphenolic content. The total phenolic and flavonoid content of the flower extracts determined by the Folin-Ciocalteau and aluminium chloride colorimetric methods ranged from 680.02 to 2360.57 mg of GAE/100 g FW and from 12.52 to 78.36 mg QE/100 g FW. The radical scavenging activity against ABTS ranged from 27.17 to 130.35 µM Trolox/g FW. Due to its ornamental value, H12 was screened by HPLC-PDA-ESI-MS to identify and quantify the chemical compounds involved in flower colour. Among the six compounds that were identified and quantified (i.e. cyanidin-3-O-galactoside, cyanidin-3-O-xyloside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, peonidin-3-O-glucoside and apigenin-6-C-glucoside), isovitexin reached the highest concentration 4183 µg rutin/100 g FW. These preliminary results, showing high total polyphenolic content and ABTS antioxidant activity, suggest that Streptocarpus flowers could be a valuable source of antioxidants.

References

Abe H, Nakano M, Nakatsuka A, Nakayama M, Koshioka M, Yamagishi M (2002). Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theoretical and Applied Genetics 105(8):1175-1182. https://doi.org/10.1007/s00122-002-1053-7

Afkhami-Sarvestani R, Serek M, Winkelmann T (2012). Interspecific crosses within the Streptocarpus subgenus Streptocarpella and intergeneric crosses between Streptocarpella and Saintpaulia ionantha genotypes. Scientia Horticulturae (Amsterdam) 148:215-222. https://doi.org/10.1016/j.scienta.2012.10.006

Arnao MB, Cano A, Alcolea JF, Acosta M (2001). Estimation of free radical‐quenching activity of leaf pigment extracts. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 12(2):138-43. https://doi.org/10.1002/pca.571

Aros D, Suazo M, Rivas C, Zapata P, Ubeda C, Bridge M (2019). Molecular and morphological characterization of new interspecific hybrids of alstroemeria originated from A. caryophylleae scented lines. Euphytica 215:93. https://doi.org/10.1007/s10681-019-2415-4

Becker A, Alix K, Damerval C (2011). The evolution of flower development: current understanding and future challenges. Annals of Botany 107(9):1427-31. https://doi.org/10.1093/aob/mcr122

Bodea M, Pamfil D, Pop R, Sisea RC (2016). DNA isolation from desiccated leaf material from plum tree (Prunus domestica L.) molecular analysis. Bulletin UASVM CN (H) 1:1-2. http://dx.doi.org/10.15835/buasvmcn-hort:11761

Bonner J, Varner JE (1965). Plant biochemistry, Academic Press, San Diego.

Borowska EJ, Mazur B, Gadzała Kopciuch R, Buszewski B (2009). Polyphenol, anthocyanin and resveratrol mass fractions and antioxidant properties of cranberry cultivars. Food Technology and Biotechnology 47(1):56-61. https://hrcak.srce.hr/33053

Bruneton J (1999). Anthocyanins. In: Pharmacognosy-phytochemistry medicinal plants (2nd edition). Intercepts, London.

Chaudhury A, Power JB, Davey MR (2010). High frequency direct plant regeneration from leaf and petals of Cape Primrose (Streptocarpus). Journal of Crop Sciences and Biotechnology 13:107112. https://doi.org/10.1007/s12892-010-0006-y

Conceição LDHCS, Belo GO, Souza MM, Santos SF, Cerqueira-Silva CBM, Corrêa RX (2011). Confirmation of cross-fertilization using molecular markers in ornamental passion flower hybrids. Genetics and Molecular Research 10(1):47-52. https://doi.org/10.4238/vol10-1gmr894

Cortez R, Luna‐Vital DA, Margulis D, Gonzalez de Mejia E (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety 16(1):180-98. https://doi.org/10.1111/1541-4337.12244

Crawford D, Giannasi D (1982). Plant chemosystematics. BioScience 32(2):114-124. https://www.jstor.org/stable/1308564

Crișan I, Vidican R, Morea A, Simea Ș (2018). Dyeing potential of linen fabric with Iris flower extracts. ProEnvironment/ProMediu 11(36).

Diaconeasa Z, Iuhas CI, Ayvaz H, Rugină D, Stanilă A, Dulf F, … Pintea A (2019). Phytochemical characterization of commercial processed blueberry, blackberry, blackcurrant, cranberry, and raspberry and their antioxidant activity. Antioxidants 8(11):540. https://doi.org/10.3390/antiox8110540

Dibley R (2008). Streptocarpus. Dibley Nurseries Handbooks. (2nd edition), Wales.

Dibley R (2018). Streptocarpus. Dibley Nurseries Handbooks. (3nd edition), Wales.

Farsi E, Shafaei A, Hor SY, Ahamed MB, Yam MF, Asmawi MZ, Ismail Z (2013). Genotoxicity and acute and subchronic toxicity studies of a standardized methanolic extract of Ficus deltoidea leaves. Clinics 68(6):865-75. https://doi.org/10.6061/clinics/2013(06)23

Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis 24(7):1043-8. https://doi.org/10.1016/j.jfca.2011.01.008

Forkmann G, Stotz G (1984). Selection and characterisation of flavanone 3-hydroxylase mutants of Dahlia, Streptocarpus, Verbena and Zinnia. Planta 161(3):261-5. https://doi.org/10.1007/BF00982923

Garzón GA, Narváez CE, Riedl KM, Schwartz SJ (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry 122(4):980-986. https://doi.org/10.1016/j.foodchem.2010.03.017

Garzón GA, Wrolstad RE (2009). Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chemistry 114(1):44-9. https://doi.org/10.1016/j.foodchem.2008.09.013

Ge Q, Ma X (2013). Composition and antioxidant activity of anthocyanins isolated from Yunnan edible rose (An ning). Food Science and Human Wellness 2(2):68-74. https://doi.org/10.1016/j.fshw.2013.04.001

Ginova A, Mihalev K, Kondakova V (2013). Antioxidant capacity of petals and leaves from different rose (Rosa damascena Mill.) plantations in Bulgaria. International Journal of Pure Applied Bioscience 1:38-43.

Hârţa M, Borsai O, Muntean CM, Dina NE, Fălămaş A, … Ştefan R (2020). Assessment of genetic relationships between Streptocarpus x hybridus V. parents and F1 progenies using SRAP markers and FT-IR spectroscopy. Plants 9(2):160. https://doi.org/10.3390/plants9020160

Hârţa M, Clapa D, Borsai O, Rusu MC, Kelemen C, Pop R, Pamfil D (2018) Micropropagation and assessment of genetic stability of acclimatized Streptocarpus x hybridus Voss plantlets using RAPD markers. Bulletin UASVM. Horticulture 75:154-162. http://dx.doi.org/10.15835/buasvmcn-hort:2018.0039

He M, Min JW, Kong WL, He XH, Li JX, Peng BW (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74-85. https://doi.org/10.1016/j.fitote.2016.09.011

Kaisoon O, Siriamornpun S, Weerapreeyakul N, Meeso N (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods 3(2):88-99. https://doi.org/10.1016/j.jff.2011.03.002

Kasote DM, Katyare SS, Hegde MV, Bae H (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences 11(8):982. https://doi.org/10.7150/ijbs.12096

Kelley KM, Behe BK, Biernbaum JA, Poff KL (2002). Combinations of colors and species of containerized edible flowers: Effect on consumer preferences. HortScience 37(1):218-21. https://doi.org/10.21273/HORTSCI.37.1.218

Khoo HE, Azlan A, Tang ST, Lim SM (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61(1):1361779. https://doi.org/10.1080/16546628.2017.1361779

Kobayashi N, Akabane M, Handal T, Takayanagi K (1996a). Inheritance of morphological characters and RAPD markers in intersubgeneric hybrids of azalea, (Rhododendron kiusianum Makino × R. indicum (L.) Sweet) × R. japonicum (A. Gray) Suringer f. flavum Nakai. Journal of the Japanese Society for Horticultural Science 65(1):145-53.

Koike A, Barreira JC, Barros L, Santos-Buelga C, Villavicencio AL, Ferreira IC (2015). Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chemistry 179:6-14. https://doi.org/10.1016/j.foodchem.2015.01.123

Kumar S, Pandey AK (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal https://doi.org/10.1155/2013/162750

Lawrence WJC (1957). Studies on Streptocarpus. IV. Genetics of flower colour patterns. Heredity 11:337-357.

Lawrence WJC, Scott-Moncrieff R, Sturgess VC (1939). Studies on Streptocarpus. Journal of Genetics 38(1-2):299. https://doi.org/10.1007/BF02982175

Lawrence WJC, Sturgess VC (1957). Studies on Streptocarpus. III. Genetics and chemistry of flower colour in the garden forms, species, and hybrids. Heredity 11:303-336.

Li AN, Li S, Li HB, Xu DP, Xu XR, Chen F (2014). Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. Journal of Functional Foods 6:319-30. https://doi.org/10.1016/j.jff.2013.10.022

Li C, Du H, Wang L, Shu Q, Zheng Y, Xu Y, … Ge Y (2009). Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers. Journal of Agricultural and Food Chemistry 57(18):8496-503. https://doi.org/10.1021/jf902103b

Li D, Wang P, Luo Y, Zhao M, Chen F (2017). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57(8):1729-41. https://doi.org/10.1080/10408398.2015.1030064

Lodhi MA, Guang-Ning Z, Weeden FNF, Reisch BI (1994). A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reports 12:6-13. https://doi-org.am.e-nformation.ro/10.1007/BF02668658

Loizzo MR, Pugliese A, Bonesi M, Tenuta MC, Menichini F, … Tundis R (2016). Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry 64(12):2467-74. https://doi.org/10.1021/acs.jafc.5b03092

López-Caamal A, Tovar-Sánchez E (2014). Genetic, morphological, and chemical patterns of plant hybridization. Revista Chilena de Historia Natural 87:16. https://doi.org/10.1186/s40693-014-0016-0

Mlcek J, Rop O (2011). Fresh edible flowers of ornamental plants-A new source of nutraceutical foods. Trends in Food Science & Technology 22(10):561-9. https://doi.org/10.1016/j.tifs.2011.04.006

Navarro-González I, González-Barrio R, García-Valverde V, Bautista-Ortín AB, Periago MJ (2014). Nutritional composition and antioxidant capacity in edible flowers: characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. International Journal of Molecular Sciences 16(1):805-22. https://doi.org/10.3390/ijms16010805

Nei, M (1972). Genetic distance between populations. The American Naturalist 106(949):283-292. https://doi.org/10.1086/282771

Oehlkers F (1964). Cytoplasmic inheritance in the genus Streptocarpus Lindley. In: Advances in Genetics. Academic Press, New York.

Oliveira de Belo G, Souza MM, Silva GS, Lavinscky MP (2018). Hybrids of Passiflora: P. gardneri versus P. gibertii, confirmation of paternity, morphological and cytogenetic characterization. Euphytica 214(1):2. https://doi.org/10.1007/s10681-017-2021-2

Pereira CA, Yariwake JH, McCullagh M (2005). Distinction of the C‐glycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC‐MS exact mass measurement and in‐source CID. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 16(5):295-301. https://doi.org/10.1002/pca.820

Petrova I, Petkova N, Ivanov I (2016). Five edible flowers-valuable source of antioxidants in human nutrition. International Journal of Pharmacognosy and Phytochemical Research 8(4):604-10.

Pharmawati M, Macfarlane IJ (2013). The genetic relationships of grevillea hybrids determined by RAPD markers. Hayati Journal of Biosciences 20(4):96-200. https://doi.org/10.4308/hjb.20.4.196

Pharmawati M, Macfarlane IJ (2013). The genetic relationships of Grevillea hybrids determined by RAPD marker. HAYATI Journal of Biosciences 20(4):196-200. https://doi.org/10.4308/hjb.20.4.196

Piovan A, Filippini R (2007). Anthocyanins in Catharanthus roseus in vivo and in vitro: a review. Phytochemistry Reviews 16(2-3):235-242. https://doi.org/10.1007/s11101-006-9052-y

Pires TC, Dias MI, Barros L, Calhelha RC, Alves MJ, Oliveira MB, … Ferreira IC (2019). Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International 105:580-8. https://doi.org/10.1016/j.foodres.2017.11.014

Pires TC, Dias MI, Barros L, Calhelha RC, Alves MJ, Oliveira MB, … Ferreira IC (2018). Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International 105:580-8. https://doi.org/10.1016/j.foodres.2017.11.014

Pop R, Ardelean M, Pamfil D, Gaboreanu IM (2003). The efficiency of different DNA isolation and purification in ten cultivars of Vitis vinifera. Bulletin USAMV CN (ZB) 59:259-261.

Prasad MP (2014). Molecular characterization and genetic diversity determination of Hibiscus species using RAPD molecular markers. Asian Journal of Plant Science and Research 4(3):50-56.

Prinz S, Ringl A, Huefner A, Pemp E, Kopp B (2007). 4′′′‐Acetylvitexin‐2 ″‐O‐rhamnoside, isoorientin, orientin, and 8‐methoxykaempferol‐3‐O‐glucoside as markers for the differentiation of Crataegus monogyna and Crataegus pentagyna from Crataegus laevigata (Rosaceae). Chemistry & Biodiversity 4(12):2920-31. https://doi.org/10.1002/cbdv.200790241

Ramzan F, Kim HT, Shim KK, Choi YH, Younis A, Lim KB (2018). Genetic diversity and relationship assessment of Lilium lancifolium x Asiatic hybrid 'Chianti' progeny by ISSR markers. European Journal of Horticultural Science 83(3):142-150. https://doi.org/10.17660/eJHS.2018/83.3.3

Ren Y, Yang J, Lu B, Jiang Y, Chen H, Hong Y, … Miao Y (2017). Structure of pigment metabolic pathways and their contributions to white tepal color formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. International Journal of Molecular Sciences 18(9):1923. https://doi.org/10.3390/ijms18091923

Rezende RK, Paiva LV, Paiva R, Chalfun Junior A, Torga PP, Masetto TE (2009). Divergência genética entre cultivares de gérbera utilizando marcadores RAPD [Analysis of genetic diversity between gerbera cultivars using RAPD markers]. Ciência Rural 39(8):2435-40. https://doi.org/10.1590/S0103-84782009005000176

Rieseberg LH, Ellstrand NC (1993). What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12:213-241. https://doi.org/10.1080/07352689309701902

Rodrigues MG, Mazzini RB, Pivetta KF, Alves MD, Desidério JA (2012). Characterization of the genetic variability among Caesalpinia pulcherrima (L.) Sw. (Fabaceae) plants using RAPD molecular markers. Acta Scientiarum Agronomy 34(3):259-63. https://doi.org/10.1590/S1807-86212012000300005

Rohlf FJ (2000). NTSYS-pc: numerical taxonomy and multi-variate analysis system. Exeter Publ Setauket, New York.

Röper AC, Orabi J, Lütken H, Christensen B, Skou AMT, Müller R (2015). Phenotypic and genotypic analysis of newly obtained interspecific hybrids in the Campanula genus. PloS ONE 10:e0137537. https://doi.org/10.1371/journal.pone.0137537

Rout GR, Mohapatra A (2006). Use of molecular markers in ornamental plants: a critical reappraisal. European Journal of Horticultural Science 53-68. http://www.jstor.org/stable/24126689

Sariburun E, Şahin S, Demir C, Türkben C, Uylaşer V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. Journal of Food Science 75(4):C328-35. https://doi.org/10.1111/j.1750-3841.2010.01571.x

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology 299:152-178.

Tanaka Y, Sasaki N, Ohmiya A (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54 (4):733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

Van Staden J, Pan M (2001). Genetic diversity of blue-flowered Scilla species as determined by random amplified polymorphic DNA. South African Journal of Botany 67(2):344-348. https://doi.org/10.1016/S0254-6299(15)31138-8

Vankar PS, Srivastava J (2010). Evaluation of anthocyanin content in red and blue flowers. International Journal of Food Engineering 6(4). https://doi.org/10.2202/1556-3758.1907

Yulita KS, Mansur M (2012). The occurrence of hybrid in Nepenthes hookeriana Lindl. from Central Kalimantan can be detected by RAPD and ISSR markers. Hayati Journal of Biosciences 19:18-24. http://dx.doi.org/10.4308/hjb.19.1.18

Zhang J, Yuan K, Zhou WL, Zhou J, Yang P (2011). Studies on the active components and antioxidant activities of the extracts of Mimosa pudica Linn. from southern China. Pharmacognosy Magazine 7(25):35. https://dx.doi.org/10.4103%2F0973-1296.75899

Zheng J, Yu X, Maninder M, Xu B (2018). Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. International Journal of Food Properties 21(1):1524-40. https://doi.org/10.1080/10942912.2018.1494195

Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4):555-9. https://doi.org/10.1016/S0308-8146(98)00102-2

Downloads

Published

2020-09-29

How to Cite

HȂRŢA, M. ., PAMFIL, D. ., BORSAI, O. ., POP, R. ., CLAPA, D. ., DIACONEASA, Z. ., & SISEA, C. R. (2020). Molecular and phytochemical characterization of F1 Streptocarpus hybrids and antioxidant potential of their flower extracts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1341–1356. https://doi.org/10.15835/nbha48311959

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48311959

Most read articles by the same author(s)

<< < 1 2 3