The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress

  • Neslihan SEVGIN ZIREK Van Yuzuncu Yil University, Institute of Natural and Applied Sciences, Department of Horticulture, Van
  • Ozlem UZAL Van Yuzuncu Yil University, Faculty of Agriculture, Department of Horticulture, Van
Keywords: antioxidant enzyme activity; magnesium; oxidative stress; pepper (Capsicum annum L.); salt stress

Abstract

Morphological and biochemical effects of different magnesium (Mg) doses on pepper plants under salt stress were investigated in this study. Experiments were conducted under controlled conditions of a climate cabin at 25 oC temperature, 70% relative humidity and 16/8 hours light/dark photoperiod. The developmental and metabolic effects of different magnesium doses in plants under salt stress were investigated by examining leaf antioxidant enzyme activities, Malondialdehyde (MDA) levels and chlorophyll contents. Seedlings of ‘Demre’ pepper cultivar (Capsicum annuum L. cv. ‘Demre’) were grown in Hoagland nutrient solution supplemented with 100 mM NaCl to generate salt stress. Besides salt treatments, different Mg doses (Mg 1 = 24.64 ppm, Mg 2 = 49.28 ppm, Mg 3 = 73.92 ppm, Mg 4 = 98.56 ppm, Mg 5 = 123.20 ppm) were applied to plants. On the 20th day of salt treatments, the total weight of the plants which is one of the growths and development parameters of pepper plants was measured, and plant samples were taken for analyses. A slight increase was observed in total weights of salt-treated plants with increasing Mg doses. The greatest plant weight was obtained from Mg 4 + salt treatments. It was observed that increasing Mg doses had positive effects on the development of plants under salt stress. Chlorophyll contents and antioxidant enzymes activities increased and MDA (malondialdehyde) levels, the product of lipid peroxidation, which indicates the amount of damage to plant cells, decreased with increasing Mg doses. Present measurements and analyses and resultant findings revealed that Mg treatments at increasing doses partially alleviated negative effects of salt stress on pepper seedlings.

Metrics

Metrics Loading ...

References

Aktaş H (2002). Biberde tuza dayanıklılığın fizyolojik karakterizasyonu ve kalıtımı. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Adana, 105 s (in Turkish).

Ayers RS (1977). Quality of water for irrigation. Journal of the irrigation and Drainage Division 103:135-154.

Bansal RI (1989). Effect of Zn, B and Mn application on the yield and content in berseem (Trifolium alexandrinum) grown in an alkaline soil. Acta Agronomica Hungarica 38:353-356.

Bartels D, Sunkar R (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24:23-58. https://doi.org/10.1080/07352680590910410

Cakmak I, Marschner H (1992). Magnesium deficiency and highlight intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98:1222-1226. https://doi.org/10.1104/pp.98.4.1222

Cakmak I (1994). Activity of ascorbate-dependent H2O2 scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. Journal of Experimental Botany 45:1259-1266. https://doi.org/10.1093/jxb/45.9.1259

Çiçek N, Çakırlar H (2002). The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology 28(1-2):66-74.

Davies KJA (1987). Protein damage and degradation by oxygen radicals. 1. General Aspects. Journal of Biological Chemistry 262:9895-9901.

Fridovich I (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics 274:1-11. https://doi.org/10.1016/0003-9861(86)90526-6

Gadallah MAA (1999). Effects proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum 42:249-257.

Gopikumar K, Varghese V (2004). Sand culture studies of teak (Tectona grandis) in relation to nutritional deficiency symptoms, growth and vigour. Journal of Tropical Forest Science 16:46-61.

Gossett DR, Millhollon EP, Lucas MC (1994). Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science 34:706-714. https://doi.org/10.2135/cropsci1994.0011183X003400030020x

Hecht-Buchholtz C, Schuster J (1987). Responses of al-tolerant Dayton and Al-sensitive Kearney barley cultivars to calcium and magnesium during al stress. Plant and Soil 99:47-61.

Hoagland DR, Arnon DI (1938). The water culture method for growing plants without soil. Circular California Agricultural Experiment Station 1:347-461.

Karanlık S (2001). Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması.(doktora tezi, basılmamış). Çukurova Üniversitesi Fen Bilimleri Enstitüsü Adana (in Turkish)

Kaya C, Higgs D (2003). Supplementary KNO3 improves salt tolerance in bell pepper plants. Journal of Plant Nutrition 26(7):1367-1382. https://doi.org/10.1081/PLN-120021048

Kusvuran S, Yasar F, Abak K, Ellialtioglu S (2008). Changes occur in lipid peroxidation, chlorophyll and ion contents of some salt tolerant and sensitive Cucumis sp. genotypes grown under salinity stress. Yüzüncü Yıl University Journal of Agricultural Sciences 18(1):13-20.

Kusvuran S, Ellialtioglu S, Yasar F, Abak K (2012). Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology 11(3)635-641. https://doi.org/10.5897/AJB11.2119

Luna C, Seffino LG, Arias C, Taleisnik E (2000). Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breeding 119:341-345. https://doi.org/10.1046/j.1439-0523.2000.00504.x

Lutts S, Kinet JM, Bouharmont J (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78:389-398. https://doi.org/10.1006/anbo.1996.0134

Marschner H (1995). Mineral nutrition of higher plants. Academic Press, London.

Mahajan S, Pveey GK, Tuteja N (2008). Calcium- and salt-stress signalling in plants: shedding light on SOS pathway. Archives of Biochemistry and Biophysics 471(2):146-158. https://doi.org/10.1016/j.abb.2008.01.010

Munns R,Termaat A (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology 13:143-160. https://doi.org/10.1071/PP9860143

Oztekin GB, Tuzel Y (2011). Salinity response of some tomato rootstocks at seedling stage. African Journal of Agricultural Research 6(20):4726-4735. https://doi.org/10.5897/AJAR11.1164

Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000). Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiology 122:1161-1169. https://doi.org/10.1104/pp.122.4.1161

Sas-Instıtue (1985). Sas/State User’s Guide 6. 03 ed. SAS. Instıtute. Cary, North Carolina.

Shalata A, Tal M (1998). The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum 104:169-174. https://doi.org/10.1034/j.1399-3054.1998.1040204.x

Turhan H, Genç L, Bostancı YB, Sümer A, Kavdır Y, Türkmen OS, Killi D (2006). Tuz stresinin ayçiçeği (Helianthus annuus L.) üzerine etkilerinin yansıma teknikleri yardımıyla belirlenmesi.1.Uzaktan Algılama-CBS Çalıştay ve Paneli. 27 Kasım. İstanbul Teknik Üniversitesi. İstanbul.

Türkan İ, Bor M, Özdemir F, Koca H (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought - sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science 168:223-231. https://doi.org/10.1016/j.plantsci.2004.07.032

Üzal O (2009). Tuz stresi altında yetiştirilen bazı çilek çeşitlerinde jasmonik asitin bitki gelişimi ve antioksidant enzim aktiviteleri üzerine etkisi (Doktora Tezi). Yüzüncü Yıl Üniversitesi. Fen Bilimleri Enstitüsü, Van (in Turkish).

Uzal O, Yasar F, Yasar O (2019). Effects of different doses of exogenous gibberellic acid on total plant weight, lipid peroxidation, and antioxidant enzyme activities of eggplant seedling under salt stress. Fresenius Environmental Bulletin 28(11A):8378-8382.

Yakıt S, Tuna AL (2006). Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’nın etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 19(1):59-67 (in Turkish).

Yaşar F (2003). Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vıtro ve in vıvo olarak incelenmesi. (doktora tezi basılmamış). Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van (in Turkish).

Yasar F, Uzal O, Tufenkci S, Yildiz K (2006a). Ion accumulation in different organs of green bean genotypes grown under salt stress. European Journal of Horticultural Science 71:169-172.

Yaşar F, Kuşvuran S, Ellialtıoğlu S (2006b). Determination of antioxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. Journal of Horticultural Sciences and Biotechnology 81(4):627-630. https://doi.org/10.1080/14620316.2006.11512115

Yaşar F, Ellialtıoğlu Ş, Ozpay T, Üzal Ö. (2007). Karpuz (Citrillus lanatus) genotiplerinde, tuz stresinden kaynaklanan oksidatif zararlanmanın zamana göre değişimi ve skala ile ilişkisinin belirlenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 12:59-64 (in Turkish).

Yasar F, Ellialtıoğlu S, Yıldız K (2008a). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology 55:782-786.

Yaşar F, Üzal Ö, Özpay T, Ellialtıoğlu Ş (2008b). Tuz stresinin karpuzda (Citrullus lanatus (Thunb) Mansf.) antioksidatif enzim (SOD, CAT, APX ve GR) aktivitesi üzerine etkisi, Yüzüncü Yıl Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi (YYU J AGR SCI) 18:51-55 (in Turkish).

Yasar F, Uzal O, Kose S, Yasar O, Ellialtioglu S (2014). Enzyme activities of certain pumpkin (Cucurbita spp) species under drought stress, Fresenius Environmental Bulletin 23(4):1093-1099.

Yasar F, Uzal O, Yasar O (2016). Antioxidant enzyme activities and lipid peroxidation amount of pea varieties (Pisum sativum sp. arvense L.) under salt stress. Fresenius Environmental Bulletin 2:37-42.

Yildirim E, Karlidag H, Turan M (2009). Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant, Soil and Environment 55(5):213-221.

Yildirim E, Turan M, Guvenc I (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition 31:593-612. https://doi.org/10.1080/01904160801895118

Yıldız M, Terzi H, Cenkçi S, Terzi ESA, Uruşak B (2010). Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri ve Biyoteknoloji 1(1):1-33 (in Turkish).

Yu S, Wang W, Wang B (2012). Recent progress of salinity tolerance research in plants. Russian Journal of Genetics 48(5):497-505.

Published
2020-06-30
How to Cite
SEVGIN ZIREK, N., & UZAL, O. (2020). The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 967-977. https://doi.org/10.15835/nbha48211943
Section
Research Articles