Cytogenetic polymorphism of seed progeny of walnut (Juglans regia L.) during introduction in the Central Chernozem Region

  • Vladislav N. KALAEV Voronezh State University, Faculty of Medicine and Biology, 1 Universitetskaya pl., 394018, Voronezh
  • Svetlana S. KARPOVA Voronezh State Institute of Physical Culture, 59 Karla Marksa st., 394036, Voronezh https://orcid.org/0000-0003-1870-7402
  • Firas R. H. AL-HACHAMI Voronezh State University, Faculty of Medicine and Biology, 1 Universitetskaya pl., 394018, Voronezh
  • Irina V. IGNATOVA Voronezh State University, Faculty of Medicine and Biology, 1 Universitetskaya pl., 394018, Voronezh
  • Vasiliy A. SLAVSKIY Voronezh State University of Forestry and Technologies named after G.F. Morozov, Faculty of Forestry 8 Timiryazeva str., 394087, Voronezh
Keywords: mitotic activity; nucleolar characteristics; pathological mitoses; polymorphism; walnut

Abstract

We studied the cytogenetic characteristics of the seed progeny of the walnut (Juglans regia L.) trees introduced to and grown within the territory of the Central Russian Upland. Three seedling groups with polymorphic cytogenetic characteristics were revealed: mutable (with a high level of pathological mitoses), low mutable (with a low level of cytogenetic disturbances), and intermediate groups. Cytogenetic characteristics (mitotic activity, parts of cells at various stages of mitosis, the level and spectrum of pathological mitoses, sizes of nucleoli and the spectrum of their types, the occurrence of cells with a persistent nucleolus in the stages of meta-, ana-, and telophase) in each of the selected groups were described; homeostatic mechanisms at the cellular level were discussed. The sizes of polymorphic groups were established. The small number of seedlings with a high level of cytogenetic disturbances (7.5%) and the predominance of seedlings with medium (70%) and low (22.5%) values of pathological mitoses indicated a high degree of adaptation of the introduced walnut mother trees to the environmental conditions of the Central Russian Upland. Predictors for assigning any seedling to one of the selected model groups (mutable or low mutable) were established using ROC analysis methods. The obtained data on the qualitative and quantitative polymorphism of cytogenetic characteristics can be used for the development of recommendations for improving the system of seed production and the selection of new forms of walnut in the Central Chernozem Region.

Metrics

Metrics Loading ...

References

Abdallaha IB, Tlilia E, Martinez-Forceb N (2015). Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chemistry 173:973-978. https://doi.org/10.1016/j.foodchem.2014.10.095

Abedi B, Parvaneh T (2016). Study of dorrelations between horticultural traits and variables affecting kernel percentage of walnut (Juglans regia L.). Journal of Nuts 7(1):35-44. https://doi.org/10.22034/JON.2016.522951

Alov IA (1972). Цитофизиология и патология митоза [The cytophysiology and pathology of mitosis]. Medicine, Moscow.

Amiri R, Vahdati K, Mohsenipoor S, Mozaffari M, Leslie Ch (2010). Correlations between some horticultural traits in walnut. HortScience: a publication of the American Society for Horticultural Science 45(11):1690-1694. https://doi.org/10.21273/HORTSCI.45.11.1690

Arzani K, Mansouri‐Ardakan H, Vezvaei A, Roozban MR (2008). Morphological variation among Persian walnut (Juglans regia) genotypes from central Iran. New Zealand Journal of Crop and Horticultural Science 36(3):159-168. https://doi.org/10.1080/01140670809510232

Aslani AA, Vahdati K, Rahemi M, Hassani D, Mohamadi N, Leslie C (2011). Cold hardiness and its relationship with proline content in Persian walnut. European Journal of Horticultural Science 76(3):84-90. https://www.jstor.org/stable/24126498

Aslani AA, Vahdati K, Rahemi M, Hassani D, Leslie C (2010). Supercooling and cold-hardiness of acclimated and deacclimated buds and stems of Persian walnut cultivars and selections. HortScience 45(11):1662–1667. https://doi.org/10.21273/HORTSCI.45.11.1662

Baranova TV (2013) Цитогенетический метод для выявления устойчивых генотипов [Cytogenetic method for detecting stable genotypes]. Научные ведомости Белгородского государственного университета: серия естественные науки [Scientific Bulletin of Belgorod State University, Natural Sciences series] 3(146):14-17.

Bernard A, Barreneche T, Lheureux F, Dirlewanger E (2018a). Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. Plos ONE 13(11):1-19. https://doi.org/10.1371/journal.pone.0208021

Bernard A, Lheureux F, Dirlewanger E (2018b). Walnut: past and future of genetic improvement. Tree Genetics and Genomes 14(1):1-28. https://doi.org/10.1007/s11295-017-1214-0

Beyhan O, Ozcan A, Ozcan H, Kafkas E, Kafkas S, Sutyemez M, Ercisli S (2017). Fat, fatty acids and tocopherol content of several walnut genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45(2):437-441. https://doi.org/10.15835/nbha45210932

Biganova SG, Sukhorukikh YuI, Lugovskoy AP (2015). Современные тенденции селекции ореха грецкого в России [Modern selection trends of walnut in Russia]. Современные проблемы науки и образования [Modern Problems of Science and Education] 2:531.

Burmenko YuV, Baranova TV, Kalaev VN, Sorokopudov VN (2018). Цитогенетический полиморфизм семенного потомства интродуцентов на примере Rhododendron ledebourii Pojark [Genetic polymorphism of seed progeny of introduced plants on the example of Rhododendron ledebourii Pojark]. Turczaninowia 21(1):164-173. https://doi.org/10.14258/turczaninowia.21.1.16

Butorina AK (1989). Способ предварительной генетической оценки отобранных плюсовых деревьев для создания клоновых и семенных плантаций [The method of preliminary genetic assessment of selected plus trees for the production of clone and seed plantations]. Лесохозяйственная информацияб рекомендованная для внедрения [Forestry Information Recommended for Implementation] 8:8-12.

Butorina AK, Kalaev VN, Vostrikova TV, Myagkova OE (2000). Цитогенетическая характеристика семенного потомства некоторых видов древесных растений в условиях антропогенного загрязнения г. Воронежа [Cytogenetic characteristics of seed progeny of Quercus robur L., Pinus sylvestris L., and Betula pendula Roth under conditions of anthropogenic contamination in the city of Voronezh]. Цитология [Cytology] 42(2):196-201.

Butorina AK, Kosichenko NE, Isakov YN, Pozhidaeva IM (1997). The effects of irradiation from the Chernobyl nuclear power plant accident on the cytogenetic behaviour and anatomy of trees. In: Borzan Z, Schlarbaum, SE (eds.): Cytogenetic studies of forest trees and shrub species. Zagreb, University of Zagreb, pp 211-226.

Charrier G, Bonhomme M, Lacointe A, Améglio T (2011). Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? International Journal of Biometeorology 55(6):763-774. https://doi.org/10.1007/s00484-011-0470-1

Charrier G, Poirier M, Bonhomme M, Lacointe A, Ameglio T (2013). Frost acclimation in different organs of walnut trees Juglans regia L.: how to link physiology and modelling? Tree Physiology 33(11):1229-1241. https://doi.org/10.1093/treephys/tpt090

Chelidze VP, Zatsepina OV (1988). Морфофункциональная классификация ядрышек [Morpho-functional classification of nucleoli]. Успехи современной биологии [Successes in Modern Biology] 105(2):252-267.

Cosmulescu S, Baciu A, Botu M, Achim G (2010). Environmental factors’ influence on walnut flowering. Acta Horticulturae 861:83-88. https://doi.org/10.17660/ActaHortic.2010.861.10

Fawcett T (2006). Introduction to ROC analysis. Pattern Recognition Letters 27(1):861-874. https://doi.org/10.1016/j.patrec.2005.10.010

Figueroa F, Marhuenda J, Gironés-Vilaplana A, Villaño D, Martínez-Cachá A, Mulero J, Cerdá B, Zafrlla P (2017). Soil and climate determine antioxidant capacity of walnuts. Emirates Journal of Food and Agriculture 29:557-561. https://doi.org/10.9755/ejfa.2016-10-1390

Grigoryev SG, Lobzin YuV, Skripchenko NV (2016). Роль и место логистической регрессии и ROC-анализа в решении медицинских диагностических задач [The role and place of logistic regression and ROC analysis in solving medical diagnostic task]. Journal of Infectology 8(4):36-45. https://doi.org/10.22625/2072-6732-2016-8-4-36-45

Gauthier M, Jacobs DF (2011). Walnut (Juglans spp.) ecophysiology in response to environmental stresses and potential acclimation to climate change. Annals of Forest Science 68(8):1277-1290. https://doi.org/10.1007/s13595-011-0135-6

Harandi O, Ghaffari SM (2001). Chromosome studies on pistachio (Pistacia vera L.) from Iran. In: Ak BE (Ed). XI GREMPA Seminar on Pistachios and Almonds. CIHEAM, Zaragoza. Cahiers Options Méditerranéennes; n. 56:35-40. http://om.ciheam.org/article.php?IDPDF=1600149

Hassankhah A, Vahdati K, Rahemi M, Hassani D, Khorami S (2017). Persian walnut phenology: effect of chilling and heat requirements on budbreak and flowering date. International Journal of Horticultural Science and Technology 4 (2):259-271 https://doi.org/10.22059/ijhst.2018.260944.249

Ibragimov ZA (2010). Генетические центры происхождения Juglans regia и мировое производство орехов [Genetic centers of Juglans regia origin and world nuts production]. Agrarian Science 7:17-20.

Jahanban-Esfahlan A, Ostadrahimi A, Tabibiazar M, Amarowicz R (2019). A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) Husk. International Journal of Molecular Sciences 20(16):3920. https://doi.org/10.3390/ijms20163920

Kalaev VN (2009). Цитогенетические реакции лиственных древесных растений на стрессовые условия и перспективы их использования для оценки генотоксичности окружающей среды [Cytogenetic reactions of deciduous woody plants to stress conditions and the prospects for their use for assessment of the genotoxicity of the environment]. Doctorate Thesis, Voronezh State University.

Kalaev VN, Butorina AK (2006). Cytogenetic effect of radiation in seed of oak (Quercus robur L.) trees growing on sites contaminated by Chernobyl fallout. Silvae Genetica 3:93-101.

Kalaev VN, Karpova SS, Artyukhov VG (2010). Cytogenetic characteristics of weeping birch (Betula pendula Roth) seed progeny in different ecological conditions. Bioremediation, Biodiversity and Bioavailability 4(1):77-83.

Kalaev VN, Popova AA (2014a). Цитогенетические характеристики и морфологические показатели семенного потомства деревьев дуба черешчатого (Quercus robur L.), произрастающих на территориях с разным уровнем антропогенного загрязнения [Cytogenetic characteristics and morphological parameters of English oak seed progeny (Quercus robur L.), growing in territories with different levels of anthropogenic pollution]. Вестник воронежского государственного университета. Серия: Химия. Биология. Фармация [Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy] 4:63-72.

Kalaev VN, Popova AA (2014b). Цитогенетический полиморфизм проростков семян деревьев дуба черешчатого (Quercus robur L.) на территориях с разным уровнем антропогенного загрязнения [Cytogenetic polymorphism of English oak (Quercus robur L.) seedlings from areas with different levels of anthropogenic pollution]. Проблемы региональной экологии [Problems of Regional Ecology] 2:176-190.

Karpova SS (2010). Цитогенетическая изменчивость семенного потомства деревьев березы повислой (Betula pendula Roth) в естественных древостоях Хреновского бора [Cytogenetic variability of seed progeny of birch (Betula pendula Roth) in natural stands of Khrenovskoy forest]. Вестник воронежского государственного университета. Серия: Химия. Биологи

я. Фармация [Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy] 2:85-92.

Kefayati S, Ikhsan A, Sutyemez M, Kefayati S, Ikhsan A, Sutyemez M, … Kafkas S (2019). First simple sequence repeat-based genetic linkage map reveals a major QTL for leafing time in walnut (Juglans regia L.). Tree Genetics & Genomes 15(1):13. https://doi.org/10.1007/s11295-019-1318-9

Khorami S, Arzani K, Karimzadeh G, Shojaeiyan A, Ligterink W (2018). Genome size: a novel predictor of nut weight and nut size of walnut trees. HortScience 53(3):275-282. https://doi.org/10.21273/HORTSCI12725-17

Korniyenko PS, Potanin DV (2017). Перспективы выращивания ореха грецкого в Республике Крым и России [Prospects of cultivation of walnut in the Republic of Crimea and Russia]. In: Proceedings of the XLII International Scientific Conference Science Yesterday, Today, Tomorrow. Novosibirsk 1(35):77-92.

Kosulina LG (1993). Физиология устойчивости растений к неблагоприятным факторам среды [Physiology of plant resistance to adverse environmental factors]. Publishing House of Rostov University, Rostov-on-Don.

Kulaichev AP (2007). Методы и средства анализа данных в среде Windows: Stadia [Methods and tools for data analysis in the Windows environment: Stadia]. Computer science and computers, Moscow.

Mao X, Hua Y, Chen G (2014). Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations. International Journal of Molecular Sciences 15(2):2003-2014.

Martinez-Gomez P, Vaknin Y, Gradziel TM, Dicenta F (2003). Karyotype analysis in almond. Acta Horticulturae 622:457-460. https://doi.org/10.17660/ActaHortic.2003.622.48

Martinez ML, Labuckas DO, Lamarque AL, Maestri DM (2010). Walnut (Juglans regia L.): genetic resources, chemistry, by-products. Journal of the Science of Food and Agriculture 90(11):1959-1967. http://dx.doi.org/10.1002/jsfa.4059

Nikolaev EA, Slavskiy VA, Tishchenko VV (2007). Интродукция и селекция ореха грецкого в Воронежской области [Introduction and selection of walnut in the Voronezh region]. VSU Publishing House, Voronezh.

Pomogaybin AV (2008). Эколого-биологический анализ результатов интродукционных испытаний видов рода орех (Juglans L.) в лесостепи Среднего Поволжья [Ecological and biological analysis of the results of introduction tests of species of the genus walnut Juglans L. in the forest-steppe of the Middle Volga]. PhD Thesis, Tolyatti.

Rasouli M, Tavakoli R, Imani A, Zarifi E, Ahmadi Majd M, Martínez-Gómez P (2014). Cytogenetical analysis of Iranian wild almond species. Journal of Nuts 5(1):63-67. https://doi.org/10.22034/JON.2014.515699

Simakov EA (1983). О пострадиационном восстановлении цитогенетических повреждений в проростках семян разных форм картофеля [On postirradiation repair of cytogenetic damage in seedlings of different potato forms]. Радиобиология [Radiobiology] 23(5):703-706.

Slavskiy VA, Nikolaev EA, Kalaev VN (2013). Интродукция, селекция и культивирование орехов рода Juglans в Центральном Черноземье [Introduction, selection and cultivation of Juglans nuts in the Central Black Earth Region]. Rosa vetrov, Voronezh.

Slavskiy VA, Nikolaev EA, Timashchuk DA (2015). Оценочные критерии качества плодов ореха грецкого в Центральном Черноземье [Estimated criteria of quality of fruits walnut in the Central Chernozem Region]. Лесотехнический журнал [Forest Engineering Journal] 5(4):58-66. https://doi.org/10.12737/17403

Slavskiy VA, Timashchuk DA, Mironenko AV (2017). Районирование ореха грецкого в Воронежской области по зонам устойчивости к неблагоприятным факторам [Walnut zoning in the Voronezh region by zones of resistance to adverse factors]. Лесотехнический журнал [Forest Engineering Journal] 3:143-150. https://doi.org/10.12737/article_59c224b73817f1.05901224

Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R (2015). The molecular cytogenetic characterization of pistachio (Pistacia vera L.) suggests the arrest of recombination in the largest heteropycnotic pair HC1. PLoS ONE 10(12): e0143861. https://doi.org/10.1371/journal.pone.0143861

Vahdati K, Lotfi M, Grouh MSH (2014). Karyotype analysis of haploid plants of walnut (Juglans regia L.). Acta Horticulturae 1048:225-228. https://doi.org/10.17660/ActaHortic.2014.1048.28

Vasin EA (2004). Отбор и оценка перспективных форм ореха грецкого для средней полосы России [Selection and evaluation of promising walnut forms for central Russia]. PhD Thesis, Saint Petersburg.

Veresin MM, Ulyukina MK (1970). Селекция ореха грецкого на зимостойкость методом отбора и гибридизации [Walnut breeding for winter hardiness by the method of selection and hybridization]. Лесная генетика, селекция и семеноводство. [Forest Genetics, Selection and Seed Production], Petrozavodsk, pp 365-369.

Vostrikova TV, Butorina AK (2006). Цитогенетические реакции березы повислой на действие стрессовых факторов [Cytogenetic responses of birch to stress factors]. Известия РАН. Серия биологическая [Biology Bulletin] 2:232-238.

Winter MB, Wolff B, Gottschling H, Cherubini P (2009). The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in Southern Kyrgyzstan. European Journal of Forest Research 128:531-542. https://doi.org/10.1007/s10342-009-0295-1

Wittmann W (1962). Aceto-iron-haematoxylin for staining chromosomes in squashes of plant material. Stain Technology 37:27-30. https://doi.org/10.3109/10520296209114565

Zoldos V, Besendorfer V, Jelenic S (1997). Cytogenetic damages as an indicator of pedunculate oak forest decline. In: Borzan Z, Schlarbaum SE (Eds). Cytogenetic studies of forest trees and shrub species. Zagreb, University of Zagreb, pp 275-284.

Published
2020-08-29
How to Cite
KALAEV, V. N., KARPOVA, S. S., AL-HACHAMI, F. R. H., IGNATOVA, I. V., & SLAVSKIY, V. A. (2020). Cytogenetic polymorphism of seed progeny of walnut (Juglans regia L.) during introduction in the Central Chernozem Region. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1519-1533. https://doi.org/10.15835/nbha48311941
Section
Research Articles