The role of light in the adaptation of Thymus praecox Opiz subsp. praecox for diverse habitat conditions

Authors

  • Beata BARABASZ-KRASNY Pedagogical University of Krakow, Institute of Biology, Podchorążych 2 St.,30-084 Kraków (PL)
  • Katarzyna MOŻDŻEŃ Pedagogical University of Krakow, Institute of Biology, Podchorążych 2 St.,30-084 Kraków (PL)
  • Anna SOŁTYS-LELEK Ojcow National Park, 32-045 Sułoszowa, Ojców 9 (PL)
  • Ingrid TURISOVÁ Matej Bel University in Banska Bystrica, Faculty of Natural Sciences, Department of Biology and Ecology, Tajovského 40, Banská Bystrica 974 01 (SK)

DOI:

https://doi.org/10.15835/nbha48311937

Keywords:

morphological plasticity; Ojców National Park; physiological activity; protected species; Southern Poland; Thymus praecox subsp. praecox

Abstract

The light decides about the course and efficiency of photochemical processes, being an important component of the surrounding environment shaping the plant composition in specific conditions. Thymus praecox subsp. praecox belongs to endangered taxa due to preferences for open habitats, which as a result of natural succession are exposed to overgrowth and shading with forest-scrub vegetation. In this study, an attempt was made to check the physiological activity of creeping thyme in changing environmental conditions prevailing on isolated stands in the Ojców National Park (Southern Poland). The increase in fresh and dry mass and the percentage of water in plants were determined, the content of chlorophyll a and b was measured, the intensity of chlorophyll a fluorescence was examined and the degree of electrolytes leakage through cell membranes was checked. The main aim was to determining the optimal habitat conditions for this taxon, which could help protect it. Based on the conducted research it was found, among others higher mass increase in plants from a sunny stand. Regardless of the measurement period, an increase in chlorophyll a and b content and a higher degree of cell membranes destabilisation in plants from a partially shaded stand was observed. The obtained results show, that T. praecox subsp. praecox characterises small habitat flexibility - even partial shade is not a convenient habitat for it. To optimal development, this subspecies requires conditions with high light availability. Creeping thyme is a heliophilic and thermophilic taxa and the sunny stands are optimal for it.

References

Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM (2009). Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany 60:2191-2202. https://doi.org/10.1093/jxb/erp097

Augustynowicz J, Gabryś H (1999). Chloroplast movements in fern leaves: correlation of movement dynamics and environmental flexibility of the species. Plant Cell and Environment 22:1239-1248. https://doi.org/10.1046/j.1365-3040.1999.00487.x

Avci AB (2011). Chemical variation on the essential oil of Thymus praecox ssp. scorpilii var. Laniger. International Journal of Agriculture and Biology 13:607-610.

Baker NR, Rosenquist E (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55(403):1607-1621. https://doi.org/10.1093/jxb/erh196

Baltzer JL, Thomas SC (2007). Determinants of whole-plant light requirements in Bornean rain forest tree saplings. Journal of Ecology 95:1208-1221. https://doi.org/10.1111/j.1365-2745.2007.01286.x

Barabasz-Krasny B, Możdżeń K, Sołtys-Lelek A, Stachurska-Swakoń A (2018). Biological traits of Impatiens parviflora DC. under different habitat conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(1):277-285. https://doi.org/10.15835/nbha46110970

Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32:85-100. https://doi.org/10.1016/0098-8472(92)90034-Y

Barthélémy D, Caraglio Y (2007). Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany 99:374-407. https://doi.org/10.1093/aob/mcl260

Bayat L, Arab M, Aliniaeifard S, Seif M, Lastochkina O, Li T (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants 10(5):ply052. https://doi.org/10.1093/aobpla/ply052

Biderman AW (1991). Wstępne wyniki badań nad biologią populacji Thymus praecox Opiz jako przykład badań warunkujących skuteczną ochronę zagrożonych gatunków roślin naczyniowych (Preliminary results of the research on the population biology of Thymus praecox Opiz as an example of research conditioning effective protection of endangered vascular plant species). Prądnik, Prace i Materiały Muzeum Władysława Szafera 3:193-208. (In Polish)

Biderman AW, Bąba W (2001). Thymus praecox Opiz, In: Kaźmierczakowa R, Zarzycki K (Eds). Polska Czerwona Księga Roślin (Polish Red Book of Plants). Władysław Szafer Institute of Botany, PAN, Kraków, pp 320-321. (In Polish)

Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489-504. https://doi.org/10.1007/BF00402983

Black M, Pritchard HW (2002). Desiccation and survival in plants: drying without dying. CAB International, Wallingford, UK.

Campos PS, Quartin V, Ramalho JC, Nunes MA (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology 160(3):283-292. https://doi.org/10.1078/0176-1617-00833

Carvalho RF, Takaki M, Azevedo RA (2011). Plant pigments: the many faces of light perception. Acta Physiologiae Plantarum 33:241-248. https://doi.org/10.1007/s11738-010-0533-7

Chen XH (2007). Exploring the adaptation mechanism of the shade plant to shading environment. Bulletin Biology 71:853-859. (In Chinese)

Dai YJ, Shen ZG, Ying L, Wang LL, Hannaway D, Lu H (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany 65:177-182. https://doi.org/10.1016/j.envexpbot.2008.12.008

Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany 65(5):1259-1270. https://doi.org/10.1093/jxb/eru004

Duchoň M (2012). Thymus praecox Opiz subsp. praecox. Retrieved 2020 February 12 from https://botany.cz/cs/thymus-praecox/

Enriquez S, Sand-Jensen K (2003). Variation in light absorption properties of Mentha aquatica L. as a function of leaf form: implications for plant growth. International Journal of Plant Sciences 164:125-136. https://doi.org/10.1086/344759

Euro+Med (2006-) Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. Retrieved 2020 February 10 from http://ww2.bgbm.org/EuroPlusMed/

Frank J, Sterck FJ, Duursma RW, Valladares F, Cieslak M, Weemstra M (2013). Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey. Journal of Ecology 101:971-980. https://doi.org/10.1111/1365-2745.12076

Guidi L, Mori S, Degl’Innocenti E, Pecchia S (2007). Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiology and Biochemistry 45(10-11):851-857. https://doi.org/10.1016/j.plaphy.2007.07.001

Gutschick VP (1999). Biotic and abiotic consequences of differences in leaf structure. New Phytology 143:3-18. https://doi.org/10.1046/j.1469-8137.1999.00423.x

Harper JL (1981). The meaning of rarity. In: Synge H (Ed). The biological aspects of rare plant conservation. John Wiley & Sons, New York, pp 189-203.

Havaux M (1993). Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant, Cell and Environment 16:461-467. https://doi.org/10.1111/j.1365-3040.1993.tb00893.x

Karbstein K, Tomasello S, Prinz K (2019). Desert-like badlands and surrounding (semi-) dry grasslands of central Germany promote small-scale phenotypic and genetic differentiation in Thymus praecox. Ecology and Evolution 9:14066-14084. https://doi.org/10.1002/ece3.5844

Kirchhoff H (2014). Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1640):2013-2025. https://doi.org/10.1098/rstb.2013.0225

Kono M, Terashima I (2014). Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. Journal of Photochemistry and Photobiology B: Biology 137:89-99. https://doi.org/10.1016/j.jphotobiol.2014.02.016

Kono M, Terashima I (2016). Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant and Cell Physiology 57:1405-1414. https://doi.org/10.1093/pcp/pcw103

Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology 42:313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525

Li Q, Kubota C (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67:59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011

Lichtenthaler HK, Babani F (2004). Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (Eds). Chlorophyll a fluorescence: a signature of photosynthesis. Springer, pp 713-736.

Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, … Rahmsdorf U (1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research 2(2):115-141. https://doi.org/10.1007/BF00028752

Lichtenthaler HK, Buschmann C, Knapp M (2004). Measurement of chlorophyll fluorescence kinetics (Kautsky effect) and the chlorophyll fluorescence decrease ratio (RFd-values) with the PAM-Fluorometer. In: Filek N, Biesaga-Kościelniak J, Marcińska I (Eds). analytical methods in plant stress biology. The Franciszek Gorski Institute of Plant Physiology of the Polish Academy of Sciences, Krakau, p. 93-111.

Lichtenthaler HK, Rinderle U (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critical Reviews in Analytical Chemistry 19:29-85. https://doi.org/10.1080/15476510.1988.10401466

Mártonfi P, Mártonfiová L (1996). Thymus chromosome numbers from Carpathians and Pannonia. Thaiszia - Journal of Botany 6:25-38.

Matos FS, Wolfgramm R, Cavatte PC, Villela FG, Ventrella MC, DaMatta FM (2009). Phenotypic plasticity in response to light in the coffee tree. Environmental and Experimental Botany 67:421-427. https://doi.org/10.1016/j.envexpbot.2009.06.018

Maxwell K, Johnson GN (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51(345):659-668. https://doi.org/10.1093/jxb/51.345.659

Meusel H, Jäger E, Rauschert S, Weinert E (1978). Vergleichende Chorologie der zentraleuropäischen Flora. II. Karten (Comparative chorology of Central European flora. II. Cards). Gustav Fischer Verlag, Jena. (In German)

Mielke MS, Schaffer B (2010). Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany 68:113-121. https://doi.org/10.1016/j.envexpbot.2009.11.007

Miyata K, Ikeda H, Nakaji M, Kanel DR, Terashima I (2015). Rate constants of PSII photoinhibition and its repair, and PSII fluorescence parameters in field plants in relation to their growth light environments. Plant and Cell Physiology 56(9):1841-1854. https://doi.org/10.1093/pcp/pcv107

Możdżeń K (2019). Wpływ składu spektralnego światła na wybrane procesy fizjologiczne mchów w warunkach stresu ozonowego (Impact of spectral composition of light on selected physiological processes of mosses under ozone stress conditions). Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, Kraków, 128 pp. (In Polish) https://doi.org/10.24917/97883808462

Możdżeń K, Saja D, Ryś M, Skoczowski A (2014). Impact of light spectral composition on the length and weight of the gametophyte Polytrichiastrum formosum (Hedw.) G.L.Sm., Plagiomnium cuspidatum (Hedw.) T.J.Kop. and Pleurozium schreberi (Brid.) Mitt. Modern Phytomorphology 5:73-78.

Pawłowski B (1967). Rozmieszczenie geograficzne kilku macierzanek (Thymus L.) w Polsce i zachodniej Ukrainie (Geographical distribution of several thymes (Thymus L.) in Poland and western Ukraine). Fragmenta Floristica et Geobotanica 13(1):15-50. (In Polish)

Pearcy RW, Way DA (2012). Two decades of sunfleck research: looking back to move forward. Tree Physiology 32:1059-1061. https://doi.org/10.1093/treephys/tps084

Pilarski J, Tokarz K, Kocurek M (2012). Adaptacja roślin do składu spektralnego i intensywności promieniowania (Adaptation of plants to spectral composition and radiation intensity). Prace Instytutu Elektrotechniki 256:223-236. (In Polish)

PN-ISO 11277:2005 (2005). Jakość gleby - Oznaczanie składu granulometrycznego w mineralnym materiale glebowym - Metoda sitowa i sedymentacyjna (Soil quality - Determination of the granulometric composition in mineral soil material - Sieve and sedimentation method).

Polskie Towarzystwo Gleboznawcze (2009). Klasyfikacja uziarnienia gleb i utworów mineralnych - PTG 2008 (Particle size distribution and textural classes of soils and mineral materials - classification of Polish Society of Soil Science 2008). Roczniki Gleboznawcze 60(2):5-16. (In Polish)

Prasch CM, Sonnewald U (2015). Signaling events in plants: stress factors in combination change the picture. Environmental and Experimental Botany 114:4-14. https://doi.org/10.1016/j.envexpbot.2014.06.020

Proctor MCF (2005). Why do Polytrichaceae have lamellae? Journal of Bryology 27:221-229. https://doi.org/10.1179/174328205X69968

Proctor MCF, Smirnoff N (2000). Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. Journal of Experimental Botany 51:1695–1704. https://doi.org/10.1093/jexbot/51.351.1695

Rascher U, Liebig M, Lüttge U (2010). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant and Cell Environment 23:1397-1405. https://doi.org/10.1046/j.1365-3040.2000.00650.x

Rintamaki E, Salo R, Lehtonen E, Aro EM (1995). Regulation of D1 protein-degradation during photoinhibition of photosystem-II in vivo phosphorylation of the D1 protein in various plant groups. Planta 195:379-386. https://doi.org/10.1007/BF00202595

RMS (2014). Rozporządzenie Ministra Środowiska z dnia 9 października 2014 r. w sprawie ochrony gatunkowej roślin Dz. U. 16 października 2014 r. Poz. 1409 (Regulation of the Minister of the Environment of October 9, 2014 on the protection of plant species, Journal of Laws October 16, 2014. Pos. 1409) (In Polish).

Rutkowski L (2004). Klucz do oznaczania roślin naczyniowych Polski (Key for determining vascular plants of Poland). PWN, Warszawa. (In Polish).

Schumann T, Paul S, Melzer M, Dörmann P, Jahns P (2017). Plant growth under natural light conditions provides highly flexible short-term acclimation properties toward high light stress. Frontiers in Plant Science 8:681. https://doi.org/10.3389/fpls.2017.00681

Smith H (1982). Light quality, photoreception, and plant strategy. Annual Review of Plant Physiology 33:481-518. https://doi.org/10.1146/annurev.pp.33.060182.002405

Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist 155:349-361. https://doi.org/10.1046/j.1469-8137.2002.00482.

Théry M (2001). Forest light and its influence on habitat selection. Plant Ecology 153:251-261. https://doi.org/10.1023/A:1017592631542

Trela-Sawicka Z (1972). Further cytological studies in the genus Thymus L. from Poland. Acta Biologica Cracoviensia, series Botanica 15:61-68.

Tyagi A, Gaur T (2003). Light regulation of nuclear photosynthetic genes in higher plants. Critical Reviews in Plant Sciences 22(5):417-452. https://doi.org/10.1080/07352680390243503

Valladares F, Niinemets U (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39:237-257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

Van Rensen JJS, Vredenberg WJ (2011). Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm. Photosynthesis Research 108:191-200. https://doi.org/10.1007/s11120-011-9680-y

Wittmann C, Aschan G, Pfanz H (2001). Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic and Applied Ecology 2:145-154. https://doi.org/10.1078/1439-1791-00047

Wojkowski J, Caputa Z (2009). Przestrzenne i czasowe zróżnicowanie promieniowania pochłoniętego na obszarze Ojcowskiego Parku Narodowego (Spatial and temporal differentiation of absorbed radiation in the Ojców National Park). Prądnik, Prace i Materiały Muzeum Władysława Szafera 19:169-180. (In Polish)

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, . . . Villar R (2004). The worldwide leaf economics spectrum. Nature 428:821-827. https://doi.org/10.1038/nature02403

Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, . . . Yamamoto Y (2008). Quality control of photosystem II: impact of light and heat stresses. Photosynthesis Research 98:589-608. https://doi.org/10.1007/s11120-008-9372-4

Yang F, Fan Y, Wu X, Cheng Y, Liu Q, Feng L, . . . Yang W (2018a). Auxin-to-gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Frontiers in Plant Science 9:56. https://doi.org/10.3389/fpls.2018.00056

Yang F, Feng L, Liu Q, Wu X, Fan Y, Ali Raza M, . . . Yang W (2018b). Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany 150:79-87. https://doi.org/10.1016/j.envexpbot.2018.03.008

Yang XY, Ye XF, Liu GS, Wei HQ, Wang Y (2007). Effects of light intensity on morphological and physiological characteristics of tobacco seedlings. Chinese Journal of Apply Ecology 18:2642-2645.

Yao X, Li C, Li S, Zhu Q, Zhang H, Wang H, . . . Xie F (2017). Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regulation 83:1-8. https://doi.org/10.1007/s10725-017-0307-y

Zarzycki K, Szeląg Z (2006). Red list of vascular plants in Poland. In: Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z (Eds). Red list of plants and fungi in Poland. Władysław Szafer Institute of Botany, PAN, Kraków, pp 99.

Zheng B, Chen HG, Yan ZQ, Luo XZ, Duan LJ, He HG (2014). Effects of shade on morphological, anatomical and physiological properties of Patrinia villosa (Thunb.) Juss. leaves. Hubei Agricultural Sciences 53:3111-3115.

Downloads

Published

2020-08-25

How to Cite

BARABASZ-KRASNY, B., MOŻDŻEŃ, K., SOŁTYS-LELEK, A., & TURISOVÁ, I. (2020). The role of light in the adaptation of Thymus praecox Opiz subsp. praecox for diverse habitat conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1194–1209. https://doi.org/10.15835/nbha48311937

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48311937

Most read articles by the same author(s)

1 2 > >>