Physiological and biochemical responses at leaf and root levels in two Acacia species (A. cyclops and A. salicina) subjected to dehydration

  • Samira SOUDEN University of Gabes, Faculty of Sciences of Gabes, Laboratory of Biodiversity and Valorization of Bioresources in Arid Zones, 6072 Gabes
  • Mustapha ENNAJEH University of Gabes, Faculty of Sciences of Gabes, Laboratory of Biodiversity and Valorization of Bioresources in Arid Zones, 6072 Gabes
  • Habib KHEMIRA University of Gabes, Faculty of Sciences of Gabes, Laboratory of Biodiversity and Valorization of Bioresources in Arid Zones, 6072 Gabes; Jazan University, Center for Environmental Research and Studies (CERS), 82817 Jazan
Keywords: Acacia sp.; arabitol; cyclitols; drought tolerance; forestation; photosynthesis; water relations


To set-up afforestation and reforestation projects in arid regions southern Tunisia, several indigenous and exotic forest species were used among them are Acacia spp. However, the success of these projects remains highly sceptical because of the intensified aridity during the last decade. To overcome this issue, the selection of genotypes resistant to severe drought is crucial as first step. For this reason, the aim of the present study is to compare tolerance capacity to severe drought between two Acacia species (A. cyclops and A. salicina) and evaluate efficacy of their biochemical responses at leaf and root levels. Combined physiological and biochemical approaches were adopted. Two-years-old plants of two Acacia species (A. cyclops and A. salicina), frequently used in forestation projects in arid regions southern Tunisia, were subjected to severe water stress by withholding watering during 60 days. At regular intervals, water relations and net photosynthetic rate (Pn) were measured. In addition, the biochemical response was characterized by quantifying one sugar alcohol (arabitol) and three cyclitols (myo-inositol, pinitol and quercitol) in leaves and roots. Our results revealed that A. cyclops was more tolerant to severe drought than A. salicina. The turgor of its leaf tissues and its Pn were less affected. The superiority of A. cyclops to tolerate severe water stress might be attributed to greater efficiency of its biochemical defense mechanisms compared to A. salicina. Comparison of biochemical profiles between species exhibited some differences depending on the organs and the species. For development and survival under severe drought conditions, A. cyclops accomplished efficient osmoregualation and osmoprotection mechanisms by massive accumulation of specific polyols distinctly in leaves and roots. Indeed, compared to A. salicina, A. cyclops accumulated higher amount of arabitol, myo-inositol and quercitol in roots, but pinitol in leaves. So, contents of these polyols might be used as promising criteria for the selection of drought-tolerant Acacia species. 


Metrics Loading ...


Abbas G, Saqib M, Akhtar J, Murtaza G, Shahid M, Hussain A (2016). Relationship between rhizosphere acidification and phytoremediation in two Acacia species. Journal of Soils and Sediments 16(4):1392-1399.

Adams MA, Richter A, Hill AK, Colmer TD (2005). Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant, Cell & Environment 28(6):772-787. 01328.x

Albouchi A, Ghrir R, El Aouni M (1997). Endurcissement à la sécheresse et accumulation de glucides solubles et d'acides aminés libres dans les phyllodes d'Acacia cyanophylla Lindl. Annales des Sciences Forestières 54:155-168.

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg ET (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4):660-684.

Aranda I, Pardos M, Puértolas J, Jiménez MD, Pardos JA (2007). Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiology 27(5):671-677.

Aref IM, El-Juhany L, Hegazy SS (2003). Comparison of the growth and biomass production of six Acacia species in Riyadh, Saudi Arabia after 4 years of irrigated cultivation. Journal of Arid Environments 54(4):783-792.

Aref IM, El-Juhany LI (1999). Effects of drought stress on the growth of Acacia asak (Forssk.), A. tortilis (Forssk.) and A. gerrardii (Benth) ssp. negevensis (Zoh.). Monsura University Journal of Agricultural Sciences 24(10):5627-5636.

Chaves M (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany 42(1):1-16.

Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology 30(3):239-264.

Chen W, Feng C, Guo W, Shi D, Yang C (2011). Comparative effects of osmotic-, salt-and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants. Photosynthetica 49(3):417.

DGF (2010). Résultats du deuxième inventaire forestier et pastoral national. Ministère de l'Agriculture de Tunisie 180.

Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein P (2010). The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. The Plant Cell 22(3):888-903.

Donoso S, Peña K, Pacheco C, Luna G, Aguirre A (2011). Respuesta fisiológica y de crecimiento en plantas de Quillaja saponaria y Cryptocarya alba sometidas a restricción hídrica. Bosque (Valdivia) 32(2):187-195.

El Atta HA, Aref IM, Ahmed AI, Khan PR (2012). Morphological and anatomical response of Acacia ehrenbergiana Hayne and Acacia tortilis (Forssk) Haynes subspp. raddiana seedlings to induced water stress. African Journal of Biotechnology 11(44):10188-10199.

Fetoui M, Sghaier M, Loireau M, Chouikhi F (2015). Vulnerability of natural resources in Tunisian arid zones facing climate change and human pressure: Toward better target actions to combat desertification. Journal of Earth Science & Climatic Change 6(2):260.

Floret C, Pontanier R (1982). L'aridité en Tunisie présaharienne. Travaux et doc ORSTOM, Paris n° 150, pp 544.

Galmés J, Medrano H, Flexas J (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist 175(1):81-93.

Genin D (2006). Entre désertification et développement: la Jeffara tunisienne: IRD Editions.

Gimeno TE, Sommerville KE, Valladares F, Atkin OK (2010). Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: insights from two contrasting Acacia species. Functional Plant Biology 37(4):323-333.

Griffin JJ, Ranney TG, Pharr DM (2004). Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). Journal of the American Society for Horticultural Science 129(4):497-502.

Guarnaschelli AB, Lemcoff JH, Prystupa P, Basci SO (2003). Responses to drought preconditioning in Eucalyptus globulus Labill. provenances. Trees 17(6):501-509.

Jabeen N, Ahmad R (2012). Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress. Pakistan Journal of Botany 44(4):1341-1345.

Jaleel CA, Manivannan, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam PR (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture Biology 11(1):100-105.

Kebbas S, Lutts S, Aid F (2015). Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage. Photosynthetica 53(2):288-298.

Lassouane N, Aïd F, Lutts S (2013). Water stress impact on young seedling growth of Acacia arabica. Acta Physiologiae Plantarum 35(7):2157-2169.

Le Houérou HN (1959). Recherches écologiques et floristiques sur la végétation de la Tunisie méridionale.

Liu LX, Xu SM, Wang DL, Woo K (2008). Accumulation of pinitol and other soluble sugars in water‐stressed phyllodes of tropical Acacia auriculiformis in northern Australia. New Zealand Journal of Botany 46(2):119-126.

Lorenzo P, González, Reigosa MJ (2010). The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Annals of Forest Science 67(1):101.

Maslin R, McDonald MW (2004). Acacia Search: evaluation of Acacia as a woody crop option for southern Australia: Canberra, Rural Industries Research and Development Corporation.

McCutchan H, Shackel K (1992). Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). Journal of the American Society for Horticultural Science 117(4):607-611.

McDowell NG (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology 155(3):1051-1059.

Merchant A, Adams M (2005). Stable osmotica in Eucalyptus spathulata-responses to salt and water deficit stress. Functional Plant Biology 32(9):797-805.

Merchant A, Tausz M, Arndt SK, Adams MA (2006). Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell & Environment 29(11):2017-2029.

Nativ R, Ephrath JE, Berliner PR, Saranga Y (1999). Drought resistance and water use efficiency in Acacia saligna. Australian Journal of Botany 47(4):577-586.

Nguyen A, Lamant A (1988). Pinitol and myo-inositol accumulation in water-stressed seedlings of maritime pine. Phytochemistry 27(11):3423-3427.

Nobel P (1991). Physicochemical and environmental plant physiology. Academic Press, San Diego.

Noumi Z, Abdallah F, Torre F, Michalet R, Touzard B, Chaieb M (2011). Impact of Acacia tortilis ssp. raddiana tree on wheat and barley yield in the south of Tunisia. Acta Oecologica 37(2):117-123.

Novriyanti E, Watanabe M, Makoto K, Takeda T, Hashidoko Y, Koike T (2012). Photosynthetic nitrogen and water use efficiency of Acacia and Eucalypt seedlings as afforestation species. Photosynthetica 50(2):273-281.

Oba G, Nordal I, Stenseth NC, Stave J, Bjorå CS, Muthondeki JK, Bii WK (2001). Growth performance of exotic and indigenous tree species in saline soils in Turkana, Kenya. Journal of Arid Environments 47(4):499-511.

Orthen B, Popp M (2000). Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environmental and Experimental Botany 44(2):125-132.

Otieno D, Schmidt M, Adiku S, Tenhunen J (2005). Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. Tree Physiology 25(3):361-371.

Ouessar M, Bruggeman A, AbdelliF, Mohtar R, Gabriels D, Cornelis W (2009). Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrology and Earth System Sciences 13(10):2003-2021.

Ramoliya PJ, Pandey AN (2002). Effect of salinization of soil on emergence, growth and survival of seedlings of Acacia nilotica. Botánica Complutensis 26(2002):105-119.

Rontein D, Basset G, Hanson AD (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering 4(1):49-56.

Sapeta H, Costa JM, Lourenco T, Maroco J, Van der Linde P, Oliveira MM (2013). Drought stress response in Jatropha curcas: growth and physiology. Environmental and Experimental Botany 85:76-84.

Schobert B (1977). Is there an osmotic regulatory mechanism in algae and higher plants? Journal of Theoretical Biology 68(1):17-26.

Scholander PF, Bradstreet ED, Hemmingsen E, Hammel H (1965). Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668):339-346.

Shvaleva AL, E. Silva FC, E. Breia Jouve J, Hausman JF, Almeida MH, Maroco J, Rodrigues M, Pereira JS, Chaves MM. (2006). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology 26(2):239-248. https://doi.org10.1093/treephys/26.2.239

Turner NC, O'Toole JC, Cruz R, Yambao E, Ahmad S, Namuco O, Dingkuhn M (1986). Responses of seven diverse rice cultivars to water deficits II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis. Field Crops Research 13:273-286.

Warren CR, Aranda I, Cano FJ (2011). Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant, Cell & Environment 34(10):1609-1629.

Wujeska-Klause A, Bossinger G, Tausz M (2015). Seedlings of two Acacia species from contrasting habitats show different photoprotective and antioxidative responses to drought and heatwaves. Annals of Forest Science 72(4):403-414.

Wu QS, Xia RX (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163:417-425. 024

Xu SM, Liu LX, Woo K, Wang DL (2007). Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica 45(3):348.

Yang L, Liu N, Ren H, Wang J (2009). Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecology and Management 257(8):1786-1793.

Yelenik S, Stock W, Richardson D (2004). Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restoration Ecology 12(1):44-51.

Yu H, Ong BL (2002). The effect of phyllode temperature on gas exchange and chlorophyll fluorescence of Acacia mangium. Photosynthetica 40(4):635-639.

Zaafouri MS (1993). Contraintes du milieu et réponses de quelques espèces arbustives exotiques introduites en Tunisie présaharienne. Science et Changements Planétaires/Sécheresse 4(3):201-201.

How to Cite
SOUDEN, S., ENNAJEH, M., & KHEMIRA, H. (2021). Physiological and biochemical responses at leaf and root levels in two Acacia species (A. cyclops and A. salicina) subjected to dehydration . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 11934.
Research Articles
DOI: 10.15835/nbha49111934