Influence of the hydrocarbons diesel, gasoline, and benzene on the growth and mineral and antioxidant concentrations of tomato plants

  • Álvaro MORELOS-MORENO CONACYT-Autonomous Agricultural University Antonio Narro, Department of Horticulture, 1923 Antonio Narro Street, Saltillo 25315, Coahuila (MX)
  • José F. MARTEL-VALLES Autonomous University of Nuevo León, Faculty of Biological Sciences, Pedro de Alba Street, San Nicolás de los Garza 66451, Nuevo León (MX)
  • Isidro MORALES National Polytechnic Institute, CIIDIR-Oaxaca, 1003 Hornos Street, Santa Cruz Xoxocotlán 71230, Oaxaca (MX)
  • Rahim FOROUGHBAKHCH-POURNAVAB Autonomous University of Nuevo León, Faculty of Biological Sciences, Pedro de Alba Street, San Nicolás de los Garza 66451, Nuevo León (MX)
  • Adalberto BENAVIDES-MENDOZA Autonomous Agricultural University Antonio Narro, Department of Horticulture, 1923 Antonio Narro Street, Saltillo 25315, Coahuila (MX)
Keywords: congenital waters; hydrocarbons pollution; nutritional quality; produced waters; soil pollution; Solanum lycopersicum L; water pollution

Abstract

The produced water is obtained during the extraction process of hydrocarbons, whose characteristics, composition and concentration depend on the reservoir that contains them. The waters produced contain hydrocarbons and heavy metals, and may contain essential elements for plant nutrition. Some studies indicate that for plants the most toxic components of the produced water are the hydrocarbons. This research aimed to evaluate the response in the pH and the electrical conductivity (EC) of irrigation leachate, morphological variables, mineral concentration and the generation of antioxidants in the tomato plants treated with diesel, gasoline and benzene in concentrations of 15 and 30 mg L-1, simulating the use of water produced for irrigation. An analysis of variance and tests of means of least significant difference was performed. The hydrocarbon treated plants reached the fifth cut of ripe fruits, except the treatment of diesel at 30 mg L-1, in which only 45% of the plants survived, and only the first harvest of ripe fruits was obtained. According to their type and concentration, the hydrocarbons produced both favourable and unfavourable changes in the pH, EC, stem diameter, plant height and dry fruit weight. Also, the hydrocarbons produced both beneficial and detrimental changes in the mineral concentration of the plants; however, the hydrocarbons inhibited the mineral concentration in the fruits. The level of ascorbate in the fruits was decreased, and the diesel treatments limited the accumulation of lycopene.

Metrics

Metrics Loading ...

References

Adam G, Duncan H (2002). Influence of diesel fuel on seed germination. Environmental Pollution 120(2):363-370.

https://doi.org/10.1016/S0269-7491(02)00119-7

Adams RH, Zavala-Cruz J, Morales-García F (2008). Concentración residual de hidrocarburos en suelo del trópico. II: Afectación a la fertilidad y su recuperación [Residual concentration of hydrocarbons in soil in the tropics. II: Impacts to fertility and reclamation]. Interciencia 33(7):483-489.

AOAC (1980). Official methods of analysis of the Association of Official Analytical Chemists International (13th ed). Washington.

ARPEL (2012). Guía ambiental. Disposición y tratamiento del agua producida, [Environmental guide. Disposal and treatment of produced water]. Asociación Regional de Empresas de Petróleo y Gas Natural en Latinoamérica y el Caribe, Montevideo.

Atekwana EA, Atekwana EA, Werkema DD, Allen JP, Smart LA, Duris JW, … Rossbach S (2004). Evidence for microbial enhanced electrical conductivity in hydrocarbon-contaminated sediments. Geophysical Research Letters 31(23):1-4. https://doi.org/10.1029/2004GL021359

ATSDR (1999). Total petroleum hydrocarbons (TPH). Agency for Toxic Substances and Disease Registry. Atlanta pp 1-2.

Baher ZF, Mirza M, Ghorbanli M, Bagher Rezaii M (2002). The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour and Fragrance Journal 17(4):275-277.

https://doi.org/10.1002/ffj.1097

Battelle (2007). Sediment toxicity of petroleum hydrocarbon fractions. Massachusetts Department of Environmental Protection. Massachusetts pp 89.

Clemens S, Ma JF (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology 67(1):489-512. https://doi.org/10.1146/annurev-arplant-043015-112301

Deng S, Yu G, Jiang Z, Zhang R, Ting YP (2005). Destabilization of oil droplets in produced water from ASP flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects 252(2-3):113-119.

https://doi.org/10.1016/j.colsurfa.2004.09.033

Esquivel-Cote R, Gavilanes-Ruiz M, Cruz-Ortega R, Huante P (2013). Importancia agrobiotecnológica de la enzima ACC desaminasa en rizobacterias, una revisión [Agrobiotechnological importance of the ACC deaminase in rhizobacteria, a review]. Revista Fitotecnia Mexicana 36(3):251-258.

FAO (1994). Water quality for agriculture. Food and Agriculture Organization of the United Nations. Rome. Retrieved 2019 December 12 from http://www.fao.org/docrep/003/t0234e/t0234e00.htm

García-Enciso EL, De La Rosa-Ibarra M, Mendoza-Villarreal R, Quezada-Martin MR, Arellano-García M (2014). Efecto de una película plástica modificada en algunos aspectos bioquímicos de un cultivo de tomate (Solanum lycopersicum L.) [Effect of a modified plastic film on some biochemical aspects of a tomato (Solanum lycopersicum L.) crop]. Ecosistemas y Recursos Agropecuarios 1(2):151-162.

Glick BR, Stearns JC (2011). Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. International Journal of Phytoremediation 13(1):4-16.

https://doi.org/10.1080/15226514.2011.568533

Hardoim PR, van Overbeek LS, van Elsas JD (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16(10):463-471. https://doi.org/10.1016/j.tim.2008.07.008

Harris WD, Popat P (1954). Determination of the phosphorus content of lipids. Journal of the American Oil Chemists' Society 31(4):124-127. https://doi.org/10.1007/BF02545694

Haydon MJ, Cobbett CS (2007). Transporters of ligands for essential metal ions in plants. New Phytologist 174(3):499-506. https://doi.org/10.1111/j.1469-8137.2007.02051.x

Head IM, Jones DM, Larter SR (2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344-352. https://doi.org/10.1038/nature02134

Henner P, Schiavon M, Druelle V, Lichtfouse E (1999). Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Organic Geochemistry 30(8):963-969.

https://doi.org/10.1016/S0146-6380(99)00080-7

Lewis M, Pryor R (2013). Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability. Environmental Pollution 180:345-367.

http://dx.doi.org/10.1016/j.envpol.2013.05.001

Liu H, Weisman D. Ye YB, Cui B, Huang YH, Colón-Carmona A, Wang ZH (2009). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science 176(3):375-382. https://doi.org/10.1016/j.plantsci.2008.12.002

Lurie S, Klein JD (1991). Acquisition of low-temperature tolerance in tomatoes by exposure to high-temperature stress. Journal of the American Society for Horticultural Science 116(6):1007-1012.

https://doi.org/10.21273/JASHS.116.6.1007

Manfra L, Maggi C, Bianchi J, Mannozzi M, Faraponova O, Mariani L, ... Magaletti E (2010). Toxicity evaluation of produced formation waters after filtration treatment. Natural Science 2(1):33-40.

https://doi.org/10.4236/ns.2010.21005

Martel-Valles F, Benavides-Mendoza A, Mendoza-Villarreal R, Zermeño-González A, Juárez-Maldonado A (2014). Agronomic use of produced water in tomato plants (Lycopersicon esculentum L.) under greenhouse conditions. Revista Internacional de Contaminación Ambiental 30(4):365-377.

Martel-Valles JF, Benavides-Mendoza A, Valdez-Aguilar LA, Juárez-Maldonado A, Ruiz-Torres NA (2013). Effect of the application of produced water on the growth, the concentration of minerals and toxic compounds in tomato under greenhouse. Journal of Environmental Protection 4(7):138-146.

https://doi.org/10.4236/jep.2013.47A016

Martínez MVE, López SF (2001). Efecto de hidrocarburos en las propiedades físicas y químicas de suelo arcilloso [Effects of hydrocarbon pollutants on the physical and chemical properties of clay soil]. Terra Latinoamericana 19(1):9-17.

Meyer AJ (2008). The integration of glutathione homeostasis and redox signaling. Journal of Plant Physiology 165(13):1390-1403. https://doi.org/10.1016/j.jplph.2007.10.015

NOM-138-SERMARNAT/SSAI-2012 (Norma Oficial Mexicana) (2013). Límites permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación [Mexican Official Standard NOM-138-SEMARNAT/SSAI-2012. Permissible limits of hydrocarbons in soil and specifications for characterization and remediation]. SEMARNAT, Mexico.

NOM-143-SEMARNAT-2003 (Norma Oficial Mexicana) (2005) Que establece las especificaciones ambientales para el manejo de agua congénita asociada a hidrocarburos [Mexican Official Standard NOM-143-SEMARNAT-2003. Which sets the environmental specifications for the handling of congenital water associated with hydrocarbons]. SEMARNAT, Mexico.

Ortega-Ortiz H, Benavides-Mendoza A, Mendoza-Villarreal R, Ramírez-Rodríguez H, De Alba-Romenus K (2007). Enzymatic activity in tomato fruits as a response to chemical elicitors. Journal of the Mexican Chemical Society 51(3):141-144.

Pardo-Castro JL, Perdomo-Rojas MC, Benavides-López de Mesa JL (2004). Efecto de la adición de fertilizantes inorgánicos compuestos en la degradación de hidrocarburos en suelos contaminados con petróleo [Effect of the addition of compound inorganic fertilizers on the hydrocarbon degradation in soils polluted by petroleum]. Nova 2(2):40-49. https://doi.org/10.22490/24629448.6

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved 2019 December 12 from https://www.R-project.org

RamanaRao MV, Weindorf D, Breitenbeck G, Baisakh N (2012). Differential expression of the transcripts of Spartina alterniflora Loisel (smooth cordgrass) induced in response to petroleum hydrocarbon. Molecular Biotechnology 51(1):18-26. https://doi.org/10.1007/s12033-011-9436-0.

Reynoso-Cuevas L, Gallegos-Martínez ME, Cruz-Sosa F, Gutiérrez-Rojas M (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource Technology 99(14): 6379-6385. https://doi.org/10.1016/j.biortech.2007.11.074

Rodríguez-Verástegui LL, Martínez-Hernández GB, Castillejo N, Gómez PA, Artés F, Artés-Hernández F (2016). Bioactive compounds and enzymatic activity of red vegetable smoothies during storage. Food and Bioprocess Technology 9(1):137-146. https://doi.org/10.1007/s11947-015-1609-6

Rohrbacher F, St-Arnaud M (2016). Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 6(1):1-27. https://doi.org/10.3390/agronomy6010019

Siciliano SD, Germida JJ, Banks K, Greer CW (2003). Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied and Environmental Microbiology 69(1):483-489. https://doi.org/10.1128/AEM.69.1.483-489.2003

Silva-Doza LL, Sotero-Solís VE, Velazco-Castro E, Montero-Celestino V, Araujo-Gómez MLP, García-de Sotero D, Gonzales-Ríos L (2010). Evaluación de la actividad enzimática en pulpa de Myrciaria dubia HBK McVaugh (camu camu) [Evaluation of the enzymatic activity in pulp of Myrciaria dubia HBK McVaugh (camu camu)]. Conocimiento Amazónico 1(1):95-102.

Steiner AA (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15(2):134-154. https://doi.org/10.1007/BF01347224

TOXNET (2019a). HSDB: BENZENE. Retrieved 2019 December 12 from https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~18y3HW:1

TOXNET (2019b). HSDB: FUEL OIL NO. 2. Retrieved 2019 December 12 from https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~W8aMiz:1

TOXNET (2019c). HSDB: GASOLINE. Retrieved 2019 December 12 from https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+8006-61-9

USDA (1997). Agricultural marketing Service. United States standards for grades of fresh tomatoes. United States Department of Agriculture. Washington, pp 1-14.

Vallejo V, Salgado L, Roldán F (2005). Evaluación de la bioestimulación en la biodegradación de TPHs en suelos contaminados con petróleo [Bioestimulation process during the biodegradation of TPH in oil contaminated soil]. Revista Colombiana de Biotecnología 7(2):67-78.

Veil JA (2015). U.S. produced water volumes and management practices in 2012. Ground Water Protection Council, Oklahoma.

Wang W, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1-14. https://doi.org/10.1007/s00425-003-1105-5

Youssef N, Elshahed MS, McInerney MJ (2009). Microbial processes in oil fields: culprits, problems, and opportunities. Advances in Applied Microbiology 66:141-251. https://doi.org/10.1016/S0065-2164(08)00806-X

Zapata LM, Gerard L, Davies C, Schvab MC (2007). Estudio de los componentes antioxidantes y actividad antioxidante en tomates [Study of antioxidants compounds and antioxidant activity in tomatoes]. Ciencia, Docencia y Tecnología 35(18):173-193.

Published
2021-02-10
How to Cite
MORELOS-MORENO, Álvaro, MARTEL-VALLES, J. F., MORALES, I., FOROUGHBAKHCH-POURNAVAB, R., & BENAVIDES-MENDOZA, A. (2021). Influence of the hydrocarbons diesel, gasoline, and benzene on the growth and mineral and antioxidant concentrations of tomato plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 11849. https://doi.org/10.15835/nbha49111849
Section
Research Articles
CITATION
DOI: 10.15835/nbha49111849