The potential sensitivity to climate change of selected endangered and important Natura 2000 Habitats and plants from Bucegi Natural Park, Romania

  • Anca SÂRBU University of Bucharest, Faculty of Biology, Department of Botany-Microbiology, 1-3 Intrarea Portocalelor, 060101Bucharest
  • Georg A. JANAUER University of Vienna, Department of Limnology and Biological Oceanography, 14 Althanstraße, 1090 Vienna
  • Norbert EXLER University of Vienna, Department of Limnology and Biological Oceanography, 14 Althanstraße, 1090 Vienna
  • Ion SÂRBU University “Al. I. Cuza”, Faculty of Biology, Department of Botany, 11 Bulevardul Carol I, 700506 Iaşi
  • Paulina ANASTASIU University of Bucharest, Faculty of Biology, Department of Botany-Microbiology, 1-3 Intrarea Portocalelor, 060101Bucharest; University of Bucharest, Botanic Garden “D. Brandza”, Şos. Cotroceni 32, Bucharest https://orcid.org/0000-0001-6355-2126
Keywords: climate scenarios; Natura 2000 habitats; sensitivity maps; protected plants; nature conservation

Abstract

This study was carried out in the Bucegi Natural Park, a protected area of the Romanian Carpathians. It aims at documenting the potential sensitivity of six widespread Natura 2000 habitat types and of all plants with conservative value (200 taxa) in the mountain area, to the changes in temperature and humidity, predicted for this century. Regional expert knowledge and environmental indicator values were considered in assessing the potential habitat’s sensitivity. The results support the evidence that sensitivity to temperature may be potentially higher for habitats at alpine and subalpine levels (bushes and grasslands) and medium for forest habitats. Sensitivity to moisture was detected as potentially high for forest habitats and as medium for bushes and grasslands at high mountain elevation. Microthermophilic plants have shown a greater share (76-79%) in alpine and subalpine communities, and the hydrophilic plants (86-96%) in forest communities. About 80% of plants of conservation value (microthermophilic or hydrophilic plants) may be potentially sensitive to predicted warming and drought and 44% of them (microthermophilic and hydrophilic plants) to the changes of both parameters. Climate scenarios (2011-2100) and sensitivity maps (Sat – image interpretation with GIS for the whole mountain area) are included.

Metrics

Metrics Loading ...

References

Aklemade R, Bakkenes M, Eickhout B (2011). Towards a general relationship between climate change and biodiversity: an example for plant species in Europe. Regional Environmental Change 11(1):143-150.

Andrade PA, Herrera FB, Cazzola GR (Eds.) (2010). Building resilience to climate change: ecosystem-based adaptation and lessons from the field. Gland, Switzerland: IUCN.

APNB - Administraţia Parcului Natural Bucegi (2011). Plan de management. Retrieved 2012 June 12 from www.bucegipark.ro/docs/Plan_de_management.pdf

Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011). Climate change threatens European conservation areas. Ecology Letters 14(5):484-492.

Barros C, Thuiller W, Münkemüller T (2018). Drought effects on the stability of forest-grassland ecotoned under gradual climate change. PLoS ONE 13(10):e0206138.

Bazzaz FA (1996). Plants in changing environments: linking physiological, population and community ecology. Cambridge University Press, Cambridge.

Beniston M (2003). Climatic change in mountain regions: a review of possible impacts. Climatic Change 59:5-31.

Bilz M, Kell SP, Maxted N, Lansdown RV (2011). European red list of vascular plants. Luxembourg: Publications Office of the European Union.

Burrows CJ (1990). Processes of vegetation change. Unwin Hyman Publishing, London.

Campbell A, Kapos V, Scharlemann JPW, Bubb P, Chenery A, Coad L, …, Rashid M (2009). Review of the literature on the links between biodiversity of climate change: impacts, adaptation and mitigation. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series No. 42.

Ciocârlan V (2009). Flora ilustrată a României: Pteridophyta şi Spermatophyta [Illustrated flora of Romania: Pteridophyta and Spermatophyta]. Editura Ceres, Bucureşti.

Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006). Diverse responses of phenology to global changes in a grassland ecosystem. Processing of the National Academy of Sciences 103:13740-13744.

Corlett RT, Westcatt DA (2013). Will plant movements keep up with climate change? Trends in Ecology and Evaluation. 28:482-488.

Council of Europe (1979). Convention on the conservation of European wildlife and natural heritage. Appendix I. Bern, Switzerland Bern Convention. Retrieved 2015 October 31 from http://conventions.coe.int/Treaty/FR/Treaties/Html/104-1.htm.

Council of Europe (1992). Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora. Habitat Directive. Retrieved 2015 October 31 from http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm

Doniţă N, Popescu A, Paucă-Comănescu M, Mihăilescu S, Biriş IA (2005). Habitatele din România [Habitats of Romania]. Editura Tehnică Silvică, Bucureşti.

Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L, Moser D, … Niklfeld H (2012). Post-glacial migration lag restricts range filling of plants in the European Alps. Global Ecology and Biogeography 21:829-840.

EEA (2012). European Environment Agency - climate change, impacts and vulnerability in Europe. EEA, Copenhagen. Retrieved 2012 June 19 from http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012

Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, …, Guisan A (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology 17:2330–2341.

Erschbamer B, Kiebacher T, Mallaun M, Unterluggauer P (2009). Short-term signal of climate change along an altitudinal gradient in the South Alps. Plant Ecology 202:78-89.

Förster M, Zebisch M, Wagner-Lücker I, Sschmidt T, Renner K, Neubert M (2014). Remote sensing-based monitoring of potential climate-induce impacts on habitats. In: Rannow S, Neubert M (eds). Managing protected areas in Central and Eastern Europe under climate change. Springer Science + Business, Dordrecht pp 95-113.

Frischbierr N, Profft I, Hagemann U (2014). Potential impact of climate change on forest habitats in the biosphere reserve Vessertal-Thuringian Forest in Germany. In: Rannow S, Neubert M (Eds). Managing protected areas in Central and Eastern Europe under climate change. Springer Science + Business, Dordrecht pp 243-257.

Gafta D, Mountford O (coord.) (2008). Manualul de interpretare a habitatelor Natura 2000 din România [Manual for the interpretation of Natura 2000 habitats in Romania]. Editura Risoprint, Cluj-Napoca.

Gilliam F (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist 212: 871-887.

Gottffried M, Pauli H. Reiter K, Grabherrr G (1999). A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induces by climatic warming. Diversity and Distributions 5:241-251.

Gottfried M, Pauli H, Futschik A (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2:111-115.

Grabherr G, Gottfried M, Pauli H (1994). Climate effects on mountain plants. Nature 369:448.

Gray SB, Brady SM (2016). Plant developmental responses to climate change. Developmental Biology 419(1):64-77.

Grimm NB, Chapin III FS, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, … Williamson CE (2013). The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment 11(9):474-482.

Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008). Five potential consequences of climate change for invasive species. Conservation Biology 22(3):534-543.

IPCC (2007). Intergovernmental Panel on Climate Change summary for policy makers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (Eds). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK.

Inouye DW (2019). Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences. https://doi.org/10.1111/nyas.14104

Klanderud K, Totland Ø (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86(8):2047-2054.

Körner C (1999). Alpine Plant Life. Springer-Verlag, Heidelberg and New York.

Kullman L (2007). Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. Journal of Ecology 95:41-52.

Lapenis A, Shvidenko A, Shepaschenko D, Nilson S, Aiyyer A (2005). Acclimation of Russian forests to recent changes in climate. Global Change Biology 11:2090-2102.

Lesica P, McCune B (2004). Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. Journal of Vegetation Science 15:679-690.

Lindner M, Maroschek M, Netherer S (2010). Climate change impacts, adaptive capacity and vulnerability of European forest ecosystems. Forest Ecology and Management 259:698-709.

Matteodo M, Ammann K, Verrecchia EP, Vittoz P (2016). Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution 6(19):6969-6982.

Mountford O, Gafta D, Anastasiu P, Bărbos M, Nicolin A, Niculescu M, Oprea A (2008). Natura 2000 in Romania. Habitat factsheets. Ministry of Environment and Sustainable Development, Bucureşti.

Oltean M, Negrean G, Popescu A, Roman N, Dihoru G, Sanda V, Mihăilescu S (1994). Lista roşie a plantelor superioare din România [Red list of superior plants from Romania]. In Oltean M (coord.). Studii, sinteze, documentaţii de ecologie, Acad. Română, Institutul de Biologie 1:1-52.

Ozenda P, Borel J-L (1991). Les conséquences écologiques possibles des changements climatiques dans l’Arc alpin. Rapport FUTURALP 1, Centre International pour l’Environnement Alpin (ICALPE), Chambéry.

Pauli H, Gottfried M, Grabherr G (1996). Effects of climate change on mountain ecosystems. Upward Shifting of Alpine Plants’. World Resources Review 8(3):382-390.

Pauli H, Gottfried M, Grabherr G (2003). Effects of climate change on the alpine and nival vegetation of the Alps. Journal of Mountain Ecology 7:9-12.

Pauli H, Gottfried, M, Reiter K, Klettner C, Grabherr G (2007). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994-2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology 13:147-156.

Petermann J, Alzer S, Ellwanger G, Schöder E, Ssymank A (2007). Klimawandel - Herausforderung für das europaweite Schutzgebietssystem Natura 2000 [Climate change - a challenge for the European Natura 2000 protected area system]. Naturschutz und Biologische Vielfalt 46:127-148.

Popescu A, Sanda V (1998) Conspectul florei cormofitelor spontane din România [The conspectus of spontaneous cormophytes flora from Romania]. Acta Botanica Horti Bucurestiensis /1998/:3-336.

Puşcaru D, Puşcaru-Soroceanu E, Paucă A, Şerbănescu I, Beldie A, Ştefureac T, ..., Taşcenco V (1956). Păşunile alpine din Munţii Bucegi [Alpine pastures from Bucegi Mountains]. Editura Academiei Române, Bucureşti.

Sârbu A (2011). HABIT-CHANGE project. Report on actual habitat types and potential conflicts – Natural Park Bucegi. Output 3.1.9. Retrieved 2016 August 14 from http://www2.ioer.de/download/habit-change/HABIT-CHANGE_3_1_9_habitat_types_and_potential_conflicts_BucNP_.pdf

Sârbu A, Anastasiu P, Smarandache D, Pascale G, Liţescu S, Mihai DC (2013). Habitats with conservation value from Bucegi Natural Park. Editura Ceres, Bucureşti.

Sârbu A, Janauer G, Profft I, Kaligarič M, Doroftei M (2014). potential impacts of climate change on protected habitats. In: Rannow S, Neubert M (Eds). Managing protected areas in Central and Eastern Europe under climate change. Springer Science + Business media, Dordrecht, Heidelberg New York, London pp 45-59.

Sârbu A, Anastasiu P, Smarandache D (2014). Potential impacts of climate change on alpine habitats from Bucegi Natural Park, Romania. In: Rannow S, Neubert M (Eds). Managing protected areas in Central and Eastern Europe under climate change. Springer Science + Business media, Dordrecht, Heidelberg New York, London pp 259-267.

Sârbu I, Nicolae S, Oprea A (2013). Plante vasculare din România: Determinator ilustrat de teren [Vascular plants from Romania. Field illustrated determinator]. Editura Victor B Victor, Bucureşti.

Săvulescu T (Ed.) (1952-1976). Flora României [Romanian Flora]. Vols. I-XIII. Editura Academiei Române, Bucureşti.

Schöb C, Kammer PM, Choler P, Veit H (2008). Small-scale plant species distribution in snowbeds and its sensitivity to climate change. Plant Ecology 200:91-94.

Stagl J, Hattermann F (2011). HABIT-CHANGE project. Climate change impacts as boundary condition and hydrological features. Outputs 3.2.3. 3.2.7. Retrieved 2016 August 05 from http://www2.ioer.de/download/habit-change/HABIT-CHANGE_3_2_3+3_2_7_climate_trends%20and%20impacts%20on%20hydrological%20features.pdf

Stanisci A, Frate L, Morra di Cella U, Pelino G, Petey M, Simiscalco C, Carranza ML (2016). Short-term signals of climate change in Italian summit vegetation: observation at two GLORIA sites. Plant Biosystems 150(2):227-235.

The Plant List (2013). Version 1.1. Published on the Internet. Retrieved 2015 January 23 from www.theplantlist.org

Theurillat JP, Felber F, Geissler P, Gobat JM, Fierz M, Fischlin A, … Zhao G-F (1998). Sensitivity of plant and soils ecosystems of the Alps to climate change. In: Cebon P, Dahinden U, Davies HC, Imboden D, Jaeger CC (Eds). Views from the Alps: regional perspectives on climate change. MIT Press Cambridge, MA pp 225-308.

Theurillat JP, Guisan A (2001). Potential impact of climate change on vegetation in the European Alp: a review. Climatic Change 50:77-109.

Tuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102(23):8245-8250.

Vitasse Y, François C, Delpierre E, Kremer A, Chuine I, Delzon S (2011). Assessing the effects of climate change on the phenology of European temperature trees. Agricultural and Forest Meteorology 151(7):969-980.

Wagner-Lücker I (2012). HABIT-CHANGE project. Sensitivity and potential impact maps. Combined Report on 4.3.5. 4.6.1. and 4.6.2. Retrieved 2016 September 16 from http://www2.ioer.de/download/habit-change/HABIT-CHANGE_4_3_5+4_6_1+4_6_2_Report%20Sensitivity+Potential_Impact_Maps.pdf

Wagner-Lücker I, Förster M, Janauer G (2014). Assessment of climate-induced impacts on habitats. In: Rannow S, Neubert M (Eds). Managing protected areas in Central and Eastern Europe under climate change. Springer Science + Business media, Dordrecht, Heidelberg New York, London pp 115-134.

Walther G-R, Beißner S, Burga CA (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science 16:541-548.

Zhang J, Nielsen SE, Chen Y, Georges D, Qin Y, Wang S-S, Svenning J-C, Thuiller W (2016). Extinction risk of North American seed plants elevated by climate and land-use change. Journal of Applied Ecology 54:303-312.

Published
2020-03-31
How to Cite
SÂRBU, A., JANAUER, G. A., EXLER, N., SÂRBU, I., & ANASTASIU, P. (2020). The potential sensitivity to climate change of selected endangered and important Natura 2000 Habitats and plants from Bucegi Natural Park, Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 456-479. https://doi.org/10.15835/nbha48111756
Section
Research Articles