Growth dynamics of morphological and reproductive traits of Physalis peruviana L. M1 plants obtained from seeds irradiated with gamma rays

Authors

  • Oscar M. ANTÚNEZ-OCAMPO Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Iguala, C.P. 40000, Km 2.5 Carr, Iguala-Tuxpan, Iguala de la Independencia, Guerrero (MX)
  • Serafín CRUZ-IZQUIERDO Colegio de Postgraduados. Campus Montecillo. C.P. 56230. Km 36.5 Carr. México-Texcoco, Montecillo, Estado de México. México (MX)
  • Leopoldo E. MENDOZA-ONOFRE Colegio de Postgraduados, Campus Montecillo, C.P. 56230, Km 36.5 Carr, México-Texcoco, Montecillo, Estado de México (MX)
  • Manuel SANDOVAL-VILLA Colegio de Postgraduados, Campus Montecillo, C.P. 56230, Km 36.5 Carr, México-Texcoco, Montecillo, Estado de México (MX)
  • Amalio SANTACRUZ-VARELA Colegio de Postgraduados, Campus Montecillo, C.P. 56230, Km 36.5 Carr, México-Texcoco, Montecillo, Estado de México (MX)
  • Eulogio DE LA CRUZ-TORRES Instituto Nacional de Investigaciones Nucleares, C.P. 52750, Carr, México-Toluca s/n, La Marquesa, Ocoyoacac (MX)
  • Aureliano PEÑA-LOMELÍ Universidad Autónoma Chapingo, Departamento de Fitotecnia, C.P. 56230, Km 38.5 Carr, México-Texcoco, Chapingo, Estado de México (MX)

DOI:

https://doi.org/10.15835/nbha48111745

Keywords:

crop breeding; genetic variability; horticultural crops; mutagenesis; uchuva

Abstract

There is an increasing interest in the development of uchuva (Physalis peruviana L.) cultivars adapted to greenhouse farming. Sexual behavior makes it difficult to obtain uniform commercial uchuva cultivars by conventional breeding methods. Mutations induced by gamma rays is an alternative approach. M1 plants derived from 14 irradiation 60Co doses, from 0 to 275 Gy, that were applied to uchuva seeds were evaluated. Recorded data included days to first flower and growth dynamics (four to seven samplings) of morphological traits (plant height, stem diameter, basal stems) and reproductive traits (floral buds, flowers and green fruits). Treatments were distributed in a completely randomized blocks experimental design with six replications, in a greenhouse. The experimental unit was a single M1 plant. Statistical differences were found for irradiation doses, growth samplings, and its interaction. Growth dynamics results indicate that all traits showed a linear increase with plant age (R2 = 0.92* to 0.98**), but the effect of the irradiation doses on morphological and reproductive traits was no linear. Irradiation reduced plant height by 79%. M1 plants developed from irradiated seeds at doses of 125, 175 and 200 Gy showed greater stem diameter, with more basal stems, floral buds, flowers and green fruits than the control. It is concluded that intermediate irradiation doses had a stimulating effect on vegetative growth and fruiting traits of M1 uchuva plants.

References

Ahloowalia, BS, Maluszynski M (2001). Induced mutations - A new paradigm in plant breeding. Euphytica 118:167-173. doi: https://doi.org/10.1023/A:1004162323428

Aladjadjiyan A (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture 8:369-380.

Álvarez FA, Chávez SL Ramírez FR, Estrada PW, Estrada LY, Maldonado RA (2013). Efecto del tratamiento de semillas con bajas dosis de rayos X en plantas de pimiento (Capsicum annuum L.). [Effect of seed treatment low doses of X-rays in peppers plants (Capsicum annuum L.)]. Nucleus 53:14-18.

Baek MH, Kim JH, Chung BY, Kim JS, Lee IS (2005). Alleviation of salt stress by low dose γg -irradiation in rice. Biologia Plantarum 49: 273-276. doi: 10.1007/s10535-005-3276-3

Canul-Ku J, García-Pérez F, Campos-Bravo E, Barrios-Gómez EJ, de la Cruz-Torres E, García-Andrade JM, Osuna-Canizalez FJ, Ramírez-Rojas S (2012). Efecto de la irradiación sobre nochebuena silvestre (Euphorbia pulcherrima Willd. ex Klotzsch) en Morelos. [Effect of irradiation on wild poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) in Morelos]. Revista Mexicana de Ciencias Agrícolas 3: 1495-1507. https://doi.org/10.29312/remexca.v3i8.1316

Caro-Melgarejo DP, Estupiñán-Rincón SY, Rache-Cardenal LY, Pacheco-Maldonado JC (2012). Effect of gamma rays on vegetative buds of Physalis peruviana L. Acta Agronómica 61: 305-314. doi: 305-314 2323-0118 0120-2812

Chakravarty B, Sen S (2001). Enhancement of regeneration potential and variability by γg-irradiation in cultured cells of Scilla indica. Biologia Plantarum 44: 189-193. https://doi.org/10.1023/A:1010282805522

Chopra VL (2005). Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Science 89: 353-359. doi:www.jstor.org/stable/24110583

De Souza A, García D, Sueiro L. Gilart F, Porras E, Licea L (2006). Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27: 247-257. doi: 10.1002/bem.20206

Fischer G. (2000). Crecimiento y desarrollo. In: Flórez RVJ, Fischer G, Sora RAD (Eds). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Universidad Nacional de Colombia, Bogotá, Colombia pp 9-26.

Fischer G, Herrera A, Almanza PJ (2011). Cape gooseberry (Physalis peruviana L.). In: Yahia EM (Ed). Postharvest biology and technology of tropical and subtropical fruits. Volume 2. Acai to Citrus. Woodhead Publishing, Cambridge, UK pp 374-396.

Fuchs M, González V, Castroni S, Díaz E, Castro L (2002). Efecto de la radiación gamma sobre la diferenciación de plantas de caña de azúcar a partir de callos. [Radiation gamma effect on the differentiation of plants of sugar cane obtained from callus]. Agronomía Tropical 52: 311-323. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2002000300004

Gastelum-Osorio DA, Sandoval-Villa M, Trejo-Libia C, Castro-Brindis R (2013). Fuerza iónica de la solución nutritiva y densidad de plantación sobre la producción y calidad de frutos de Physalis peruviana L. [Ionic strength of the nutrient solution and plant density on production and quality of Physalis peruviana L. fruits]. Revista Chapingo Serie Horticultura 19:197-210. doi: 10.5154/r.rchsh.2012.01.002

Gutiérrez-Castorena MC, Hernández Escobar J, Ortiz Solorio CA, Anicua Sánchez R, Hernández Lara ME (2011). Relación porosidad–retención de humedad en mezclas de sustratos y su efecto sobre variables respuesta en plántulas de lechuga. [Porosity–water retention relationship in substrate mixtures and its effect on response variables in lettuce seedlings]. Revista Chapingo Serie Horticultura 17:183-196.

Honda I, Kikuchi K, Matsuo S, Fukuda M, Saito H, Ryuto H, Fukunishi N, Abe T (2006). Heavyion-induced mutants in sweet pepper isolated by M1 plant selection. Euphytica 152: 61-66. https://link.springer.com/article/10.1007%2Fs10681-006-9177-5

Kim JH, Chung BY, Kim JS, Wi SG (2005). Effects of in Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. Journal Plant Biology 48:47-56. https://link.springer.com/article/10.1007%2FBF03030564

Kim JH, Baek MH, Chung BY, Wi SG, Kim JS (2004). Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. Journal Plant Biology 47: 314-321. https://link.springer.com/article/10.1007/BF03030546

Kodym A, Afza R, Forster BP, Ukai Y, Nakagawa H, Mba C (2011). Methodology for physical and chemical mutagenic treatments. In: Shu QY, Forster BP, Nakagawa H (Eds). Plant mutation and biotechnology, Plant Breeding and Genetics Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria pp 169-180.

Lagos BTC, Vallejo CFA, Criollo EH, Muñoz FJE (2008). Biología reproductiva de la uchuva [Sexual reproduction of the cape gooseberry]. Acta Agronómica 57: 81-87. doi: 10.15446/acag

López-Mendoza H, Carrillo-Rodríguez JC, Chávez-Servia JL (2012). Effects of gamma-irradiated seeds on germination and growth in Capsicum annuum L. plants growth in a greenhouse. Acta Horticulturae 947: 77-81. doi: 10.17660 / ActaHortic.2012.947.7

Maluszynski M, Szarejko I, Bhatia CR, Nichterlein K, Lagoda PJL (2009). Methodologies for generating variability. Part 4: Mutation techniques. In: Ceccarelli S, Guimarães EP, Weltzien E (Eds). Plant breeding and farmer participation. Food and Agriculture Organization of the United Nations. Rome, Italy pp 159-194.

Matsumura A, Nomizu T, Furutani N, Hayashi K, Minamiyama Y, Hase Y (2010). Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemun. Scientia Horticulturae 123:558-561. https://doi.org/10.1016/j.scienta.2009.11.004

Mohan Jain S (2006). Mutation-assisted breeding for improving ornamental plants. Acta Horticulturae 714: 85-98. doi: 10.17660 / ActaHortic.2006.714.10

Otahola-Gómez V, Aray M, Antoima Y (2001). Inducción de mutantes para el color de la flor en crisantemos (Dendranthema grandiflora (Ram) Tzvelev) mediante radiaciones gamma. [Induction of mutants in flower color of chrysanthemum (Dendranthema grandiflora (Ram) Tzvelev) using gamma irradiation]. Revista UDO Agrícola 1:56-63.

Prina AR, Landau AM, Pacheco MG (2011). Chimeras and mutant gene transmission. In: Shu QY, Forster BP, Nakagawa H (Eds). Plant mutation and biotechnology, plant breeding and genetics section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria pp 181-190.

Raghava RP, Raghava N (1989). Effects of gamma irradiation on fresh and dry weights of plant parts in Physalis L. Geobios 16: 261-264.

Ramírez R, González LM, Camejo Y, Zaldívar N, Fernández Y (2006). Estudio de radiosensibilidad y selección del rango de dosis estimulantes de rayos X en cuatro variedades de tomate (Lycopersicum esculentum L.). [Radiation sensitivity study and selection of the range of irradiation stimulation doses of X-rays in four tomato cultivars]. Cultivos Tropicales 27:63-67. http://www.redalyc.org/articulo.oa?id=193215885012

Rodrigues E, Rockenbach II, Cataneo C, Gonzaga LV, Chaves ES, Fett R (2009). Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciência e Tecnologia de Alimentos 29: 642-645. doi: 10.1590/S0101-20612009000300029

Santana G, Angarita A (1997). Regeneración adventicia de somoclonales de Uchuva (Physalis peruviana L.). Agronomía Colombiana 14:59-65.

SAS, Institute. 2004. SAS/STAT User's Guide. Version 9.1. SAS Institute. Cary, NC, USA.

Wi SG, Chung BY, Kim JH, Baek MH, Yang DH, Lee JW, Kim JS (2005). Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradiation. Journal Plant Biology 48:195-200. https://doi.org/10.1007/BF03030408

Wu DL, Hou SW, Qian PP, Sun LD, Zhang YC, Li WJ (2009). Flower color chimera and abnormal leaf mutants induced by 12C6± heavy ions in Salvia splendens Ker-Gawl. Scientia Horticulturae 121:462-467. https://doi.org/10.1016/j.scienta.2009.02.022

Yamaguchi H, Shimizu A, Degi K, Morishita T (2008). Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breeding Science 58: 331-335. https://doi.org/10.1270/jsbbs.58.331

Downloads

Published

2020-03-31

How to Cite

ANTÚNEZ-OCAMPO, O. M., CRUZ-IZQUIERDO, S. ., MENDOZA-ONOFRE, L. E., SANDOVAL-VILLA, M. ., SANTACRUZ-VARELA, A. ., DE LA CRUZ-TORRES, E. ., & PEÑA-LOMELÍ, A. . (2020). Growth dynamics of morphological and reproductive traits of Physalis peruviana L. M1 plants obtained from seeds irradiated with gamma rays. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 200–209. https://doi.org/10.15835/nbha48111745

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48111745

Most read articles by the same author(s)