Antioxidant Capacity of Several Romanian Forest Fruits (Rosa canina L., Prunus spinosa L., Vaccium vitis-idaea L. and Cornus mas L.)

Authors

  • Luisa ANDRONIE University of Agricultural Sciences and Veterinary Medicine, Faculty of Animal Science and Biotechnologies, 3-5 Mănăștur (RO)
  • Liviu HOLONEC University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Ioana POP University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Alina M. TRUTA University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Antonia ODAGIU University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Tudor SĂLĂGEAN University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur, Cluj-Napoca, (RO)
  • Rodica SOBOLU University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Aurelia COROIAN University of Agricultural Sciences and Veterinary Medicine, Faculty of Animal Science and Biotechnologies, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Igori BALTA University of Agricultural Sciences and Veterinary Medicine, Faculty of Animal Science and Biotechnologies, 3-5 Mănăștur, Cluj-Napoca (RO)
  • Elemer E. ȘUBA University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur, Cluj-Napoca (RO)

DOI:

https://doi.org/10.15835/nbha47411709

Keywords:

antioxidants; blackthorn; cornelian cherry; lingonberry; protein; rosehip

Abstract

The comparison of the antioxidant activity of the studied forest fruits emphasized a hierarchy of the antioxidant capacity in rosehip, blackthorn, lingonberry and cornelian cherry. The purpose of the study was to investigate the antioxidant capacity and nutritional value of rosehip, blackthorn, lingonberry and cornelian cherry. In the current study, the FT-IR spectroscopy technique was applied to detect molecular components in forest fruits samples. Antioxidant capacity was evaluated with photochemical assay as well as humidity, protein, fibre, lipid and carbohydrate content. The FT-IR results revealed the presence of different bio-active compounds in berries such as flavonoids, tannins, sugars, acids, proanthocyanidins, carotenoids, citric metabolites and others. The highest antioxidant capacity was observed in rosehip 105.67±1.38 and blackthorn 49.89±1.92 (μg/mg equivalent ascorbic acid). Regarding nutritional parameters, rosehip showed the most increased content of protein displaying average values of 1.60, carbohydrates 38.20 and fibre 24.10 (g/100 g/sample). These results can provide useful information providing a research interest for the identification of new molecular compounds from Romanian flora samples.

References

Aliyazicioglu R, Yildiz O, Sahin H, Eyuboglu OE, Ozkan MT, Karaoglu SA, Kolayliali S (2015). Components and antioxidant activity of Prunus spinosa from Gumushane, Turkey. Chemistry of Natural Compounds 51(2):346-349.

Angelov G, Boyadzhieva SS, Georgieva SS (2014). Rosehip extraction: process optimization. Central European Journal of Chemistry 12(4):502-508.

Atanasov AG, Waltenberger B, Pferschy-Wenzig EV, Linder T, Wawrosch C, Uhrin P, … Stuppner H (2015). Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnology Advances 33(8):1582-1614.

Ayati Z, Amiri MS, Ramezani M, Emami A (2018). Traditional uses and pharmacological profile of rose hip: a review. Current Pharmaceutical Design 24(35):1-24.

Balta I, Sevastre B, Miresan V, Taulescu M, Raducu C, Longodor AL, Coroian A (2019). Protective effect of blackthorn fruits (Prunus spinosa) against tartrazine toxicity development in albino Wistar rats. BMC Chemistry 13(1):104.

Bridle P, Timberlake CF (1997). Anthocyanins as natural food colours-selected aspects. Food Chemistry 58(1):103-109.

Brown PN, Turi CE, Shipley PR, Murch SJ (2012). Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Medica 78(6):630-640.

Bujor OC, Ginies C, Popa VI, Dufour C (2018). Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chemistry 252:356-365.

Cramer H, Choi D, Griep M, Karna SP (2011). Anthocyanin dyes in titanium dioxide nanoparticle-dye sensitized solar cells. 11th IEEE International Conference on Nanotechnology, Portland, OR, pp 684-686.

Crișan I, Vidican R, Olar L, Stoian V, Morea A, Ștefan R (2019). Screening for changes on Iris germanica L. rhizomes following inoculation with arbuscular mycorrhiza using Fourier transform infrared spectroscopy. Agronomy 9(12):815.

Czerwińska ME, Melzig MF (2018). Cornus mas and Cornus officinalis-analogies and differences of two medicinal plants traditionally used. Frontiers in Pharmacology 9:894.

De Souza VR, Pereira PA, da Silva TL, de Oliveira Lima LC, Pio R, Queiroz F (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry 156:362-368.

Dinda B, Kyriakopoulos AM, Dinda S, Dinda M (2016). Cornus mas L. (Cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology 193:670-690.

Dzydzan O, Bila I, Kucharska AZ, Brodyak I, Sybirna N (2019). Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food and Function 10(10):6459-6472.

Ercisli S (2007). Chemical composition of fruits in some rose (Rosa spp) species. Food Chemistry 104(4):1379-1384.

Foito A, McDougall GJ, Stewart D (2018). Evidence for health benefits of berries. Annual Plant Reviews 15:1-43.

Foo LY, Lu Y, Howell AB, Vorsa N (2000). The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54(2):173-181.

He K, Li X, Chen X, Ye X, Huang J, Jin Y, … Shu H (2011). Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. Journal of Ethnopharmacology 137(3):1135-1142.

Hegedus A, Engel R, Sefanovits-Banyai E (2010). Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: variations from genotypes, years, and analytical methods. Journal of Food Science 75(9):C722-C730.

Heo HJ, Lee CY (2005). Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. Journal of Agricultural and Food Chemistry 53(5):1984-1989.

Hokkanen J, Mattila S, Jaakola L, Tolonen A (2009). Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. Journal of Agricultural and Food Chemistry 57:9437-9447.

Hosseinpour-Jsghdani F, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopae M (2017). Cornus mas a review on traditional uses and pharmacolohgical properties. Journal of Complementary and Integrative Medicine 14(3):1-28.

Jafarirad S, Salmasi J, Divband B, Sarabchi M (2019). Systematic study of Nd3+ on structural properties of ZnO nanocomposite for biomedical applications; in-vitro biocompatibility, bioactivity, photoluminescence and antioxidant properties. Journal of Rare Earths 37(5):508-514.

Jiménez S, Jiménez-Moreno N, Luquin A, Laguna M, Rodríguez-Yoldi MJ, Ancín-Azpilicueta C (2017). Chemical composition of rosehips from different Rosa species: an alternative source of antioxidants for the food industry. Food Additives & Contaminants: Part A 34(7):1121-1130.

Joseph SV, Edirisnghe I, Burton-Freeman B (2016). Fruit polyphenols: a review of anti-inflammatory effects in humans. Critical Reviews in Food Science and Nutrition 56(3):419-444.

Khoo HE, Azlan A, Teng Tang S, Lim SM (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research 61(1):1361779.

Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013). Polyphenols: benefits to the cardiovascular system in health and in ageing. Nutrients 5:3779-3827.

Kinghorn AD, Pan L, Fletcher JN, Chai H (2011). The relevance of higher plants in lead compound discovery programs. Journal of Natural Products 74:1539-1555.

Kiralan M, Yildirim G (2019). Rosehip (Rosa canina L.) oil. In: Ramadan M (Ed). Fruit oils: chemistry and functionality. Springer, Egypt pp 803-814.

Kumar KR, Balasubrahmanyam N (1986). Moisture sorption and the applicability of the Brunauer-Emmett-Teller equation for some dry food products. Journal of Stored Products Research 22(4):205-209.

Kylli P, Nohynek L, Puupponen-Pimiä R, Westerlund-Wikström B, Leppänen T, Welling J, … Heinonen M (2011). Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. Journal of Agricultural and Food Chemistry 59(7):3373-84.

La Russa D, Giordano F, Marrone A, Parfati M, Janda E, Pellegrino D (2019). Oxidative imbalance and kidney damage in cafeteria diet-induced rat model of metabolic syndrome: effect of bergamot polyphenolic fraction. Antioxidants 8(3):66.

Laleh GH, Frydoonfar H, Heidary R, Jemeei R, Zare S (2006). The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pakistan Journal of Nutrition 5(1):90-21.

Lares-Michel M, Housni FE, Cervantes VGA, Cañedo CL (2019). Influence of women age on berries consumption: the role of liking and properties of berries as determinants of their intake. Food Science and Nutrition Studies 3(1).

Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li H (2014). Resources and biological activities of natural polyphenols. Nutrients 6:6020-6047.

Liu J, Bai R, Liu Y, Zhang X, Kan J, Jin K (2018). Isolation, structural characterization and bioactivities of naturally occurring polysaccharide–polyphenolic conjugates from medicinal plants-a reivew. International Journal of Biological Macromolecules 107:2242-2250.

Mamedov N, Craker LE (2004). Cornelian cherry: a prospective source for phytomedicine. Acta Horticulturae 629:83-87.

Meydani M, Hasan ST (2010). Dietary polyphenols and obesity. Nutrients 2:737-751.

Milenković-Andjelković AS, Andjelković MZ, Radovanović AN, Radovanović BC, Nikolić V (2015). Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hemijska Industrija 69(4):331-337.

Newman DJ, Cragg GM (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products 75:311-335.

Olsson ME, Gustavsson KE, Andersson S, Nilsson A, Duan RD (2004). Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlation with antioxidant levels. Journal of Agriculture and Food Chemistry 52(24):7264-7271.

Opris R, Toma V, Olteanu D, Filip GA (2019). Effects of silver nanoparticles functionalized with Cornus mas L. extract on architecture and apoptosis in rat testicle. Nanomedicine 14(3):275-299.

Ozdal T, David A Sela, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):78.

Ozgan M (2002). Nutrient composition of rose (Rosa canina L.) seed and oils. Journal of Medicinal Food 5(3):137-40.

Pancerz M, Ptaszek A, Sofiniska K, Barbasz J, Szlachcic P, Kucharek M, Lukasiewicz M (2019). Colligative and hydrodynamic properties of aqueous solutions of pectin from cornelian cherry and commercial apple pectin. Food Hydrocolloids 89:406-415.

Prior RL, Gu L (2005). Occurrence and biological significance of proanthocyanidoins in the American diet. Phytochemistry 66(18):2264-2280.

Radovanović BC, Anđelković SM, Radovanović AB, Anđelković MZ (2013). Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in Southeast Serbia. Tropical Journal of Pharmaceutical Research 12(5):813-819.

Ramamurthy N, Kannan S (2007). Fourier transforms infrared spectroscopic analysis of a plant (Calotropis gigantea linn) from an industrial village, Cuddalore dt, Tamilnadu, India. Romanian Journal of Biophysics 17(4):269-276.

Saha NK, Balakrishnan M, Ulbricht M (2007). Sugarcane juice ultrafitltration: FTIR and SEM analysis of polysaccharide fouling. Journal of Membrane Science 306(1-2):287-297.

Samborska K, Kaminska P, Jedlinska A, Matwijczuk A, Kaminska-Dwórznicka A (2018). Membrane processing in the sustainable production of low-sugar apple-cranberrry cloudy juice. Applied Sciences 8(7):1082.

Santana FB, Gontijo LC, Mitsutake H, Mazivilla SJ, Sourza LM, Borges W (2016). Non-distructive fraud detection in rosehip oil by MIR spectroscopy and chemimettrics. Food Chemistry 33:209:228.

Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45:287-306.

Schroeter H, Heiss C, Schmitz HH (2010). Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Molecular Aspects of Medicine 31(6):546-557.

Seeram NP, Momin RA, Nair MG, Bourquin LD (2001). Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8(5):362-369.

Sharma S, Srivastava S, Singh R, Uttam KN (2017). Label-free and rapid spectroscopic evaluation of ripening of Syzygium cumini fruit. Spectroscopy Letters 50(2):115-123.

Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences 16(10):24673-24706.

Ștefănescu BE, Szabo K, Mocan A , Crişan G (2019). Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 24(11):2046.

Tsuda T, Horio F, Osawa T (2000). The role of anthocyanins as an antioxidant under oxidative stress in rats. Biofactors 13(1-4):133-139.

Tumbas VT, Canadanović-Brunet JM, Cetojević-Simin DD, Cetković GS, Ethilas SM, Gille L (2011). Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. Journal of the Science of Food and Agriculture 92:1273-1281.

Umeno A, Horie M, Murotomi K., Nakajima Y, Yoshida Y (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21:708-723.

Vardin H, Tay A, Ozen B, Mauer L (2008). Authentication of pomegranate uice concentrate using FTIR spectroscopy and chemometrics. Food Chemistry 108(2):742-748.

Veličković JM, Kostić DA, Stojanović GS, Mitić SS, Mitić MN, Randelović SS, Đorđević AS (2014). Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L fruit. Hemijska Industrija 68(3):297-303.

Vergani L, Vecchione G, Perego P (2018). Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. European Journal of Nutrition 57(5):1793-1805.

Downloads

Published

2019-12-12

How to Cite

ANDRONIE, L. ., HOLONEC, L. ., POP, I. ., TRUTA, A. M., ODAGIU, A. ., SĂLĂGEAN, T. ., SOBOLU, R. ., COROIAN, A. ., BALTA, I. ., & ȘUBA, E. E. . (2019). Antioxidant Capacity of Several Romanian Forest Fruits (Rosa canina L., Prunus spinosa L., Vaccium vitis-idaea L. and Cornus mas L.) . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1178–1184. https://doi.org/10.15835/nbha47411709

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha47411709

Most read articles by the same author(s)

<< < 1 2