The effect of auxins in inducing organogenesis or somatic embryogenesis in mature sunflower zygotic embryo derived apex


  • Adriana AURORI University of Agricultural Science and Veterinary Medicine, Advanced Horticultural Research Institute of Transylvania, Microbiology and Biotechnology Department, 3-5 Calea Mănăștur, 400372, Cluj-Napoca (RO)
  • Imola MOLNAR Babeș-Bolyai University, Faculty of Biology and Geology, Plant Genetic Engineering Group, 5-7 Clinicilor, 400006, Cluj-Napoca (RO)
  • Elena RAKOSY-TICAN Babeș-Bolyai University, Faculty of Biology and Geology, Plant Genetic Engineering Group, 5-7 Clinicilor, 400006, Cluj-Napoca (RO)



apex with primordial leaves; ungerminated mature embryo


Induction of shoots or of somatic embryos is the key step for gaining the morphogenetic potential in sunflower (Helianthus annuus L.), species known as recalcitrant to in vitro regeneration. In the immature zygotic embryo derived tissues or in other juvenile tissues resulted from seedlings, the acquisition of the competence for regeneration can be achieved directly by cytokinin treatment or by preconditioning the explants on cytokinin containing medium. In this paper is presented a new type of explant for sunflower in vitro culture, consisting of the apex with primordial leaves, resulted from ungerminated mature zygotic embryo, in which a specific morphogenetic response was triggered by the exogenously applied auxins. Among the auxins tested, indole-3-acetic acid, indole-3-butyric acid and 1-naphthaleneacetic acid are inducers of an organogenetic response, apical/axillary shoots and adventitious buds being regenerated while 2,4-dichlorophenoxyacetic acid, 3,6-dichloro-2-methoxybenzoic acid and 4-amino-3,5,6-trichloropicolinic acid led to somatic embryo formation. Among the auxins tested only 4-amino-3,5,6-trichloropicolinic acid sustains the embryos development up to mature stage. A high amount of sucrose (120 g L-1) supplied during the auxin treatment promotes the maturation of the embryos directly on the induction medium for all tested auxins with embryogenic effect. These findings show that regardless of the type of morphogenetic response aimed in sunflower meristematic tissues resulted from mature embryos, the presence of auxins is mandatory.


Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007). Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant Journal 52(2):296-308.

Bronner R, Jeannin G, Hahne G (1994). Early cellular events during organogenesis and somatic embryogenesis induced on immature zygotic embryos of sunflower (Helianthus annuus). Canadian Journal of Botany 72(2):239-248.

Businge E, Bygdell J, Wingsle G, Moritz T, Egertsdotter U (2013). The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiologia Plantarum 149(2):273-285.

Charriere F, Hahne G (1998). Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Science 137(1):63-71.

Christianson ML, Warnick DA (1983). Competence and determination in the process of in vitro shoot organogenesis. Developmental Biology 95(2):288-293.

Dhaka N, Kothari SL (2002). Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Helianthus annuus L. Plant Cell Report 21(1):29-34.

Espinasse A, Lay C, Volin J (1989). Effect of growth regulator concentration and explant size on shoot organogenesis from callus derived from zygotic embryos of sunflower (Helianthus annuus L). Plant Cell Tissue and Organ Culture 17(2-3):171-181.

Finer JJ (1987). Direct somatic embryogenesis and plant regeneration from immature embryos of hybrid sunflower (Helianthus annuus L.) on high sucrose-containing medium. Plant Cell Report 6(5):372-374.

Fiore MC, Trabace T, Sunseri F (1997). High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Report 16(5):295-298.

Freyssinet M, Freyssinet G (1988). Fertile plant regeneration from sunflower (Helianthus annuus L) immature embryos. Plant Science 56(2):177-181.

Hewezi T, Jardinaud F, Alibert J, Kallerhoff J (2003). A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus L.) by organogenesis induction on split embryonic axes. Plant Cell Tissue and Organ Culture 73(1):81-86.

Jayabalan N, Chandrasekar BR (2007). In vitro plant regeneration through somatic embryogenesis of sunflower (Helianthus annuus L.) for crop improvement. Journal for the Theory of Social Behaviour 56:327-332.

Jeannin G, Bronner R, Hahne G (1995). Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annum L.) cultivated in vitro: role of the sugar. Plant Cell Report 15(3-4):200-204.

Jeannin G, Charriere F, Bronner R, Hahne G (1998). Is predetermined cellular competence required for alternative embryo or shoot induction on sunflower zygotic embryos? Botanica Acta 111(4):280-286.

Knittel N, Escandon AS, Hahne G (1991). Plant regeneration at high frequency from mature sunflower cotyledons. Plant Science 73(2):219-226.

Konov A, Bronner R, Skryabin K, Hahne G (1998). Formation of epiphyllous buds in sunflower (Helianthus annuus L.): induction in vitro and cellular origin. Plant Science 135(1):77-86.

Kumar P, Srivastava DK (2015). Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnology Letters 38(4):561-571.

Laparra H, Bonner R, Hahne G (1997). Amyloplasts as a possible indicator of morphogenic potential in sunflower protoplasts. Plant Science 122(2):183-192.

Lewi DM, Hopp HE, Escandón AS (2006). Sunflower (Helianthus annuus L.). Methods in Molecular Biology 343:291-297.

Merkle SA, Parrott WA, Flinn BS (1995). Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (Ed). In vitro embryogenesis in plants. Dordrecht, Kluwer Academic pp 155-203.

Michalski L (1969). Content of plant growth regulators in the developing seeds of oak (Quercus robur L.). II Auxin like substances. Acta Societatis Botanicorum Poloniae 38(1):157-163.

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum 15:473-497.

Nagy JI, Maliga P (1976). Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Zeitschrift fur Pflanzenphysiologie 78(5):453-455.

Nataraja K, Ganapathi TR (1989). In vitro plant regeneration from cotyledons of Helianthus annuus cv. Morden (sunflower). Indian Journal of Experimental Biology 27:777-779.

Ni DA., Wang LJ, Ding CH, Xu ZH (2001). Auxin distribution and transport during embryogenesis and seed germination in Arabidopsis. Cell Research 11(4):273-278.

Ozyigit II, Bajrovic K, Gozukirmizi N, Semiz BD (2002). Direct plant regeneration from hypocotyl and cotyledon explants of five different sunflower genotypes (Helianthus annuus L.) from Turkey. Biotechnology & Biotechnical Equipment 16(1):8-11.

Ozyigit II, Gozukirmizi N, Semiz BD (2007). Genotype dependent callus induction and shoot regeneration in sunflower (Helianthus annuus L.). African Journal of Biotechnology 6(13):1498-1502.

Paterson KE (1984). Shoot tip culture of Helianthus annuus - flowering and development of adventitious and multiple shoots. American Journal of Botany 71(7):925-931.

Paterson KE, Everett NP (1985). Regeneration of Helianthus annuus inbred plants from callus. Plant Science 42(2):125-132.

Pelissier B, Bouchefra O, Pepin R, Freyssinet G (1990). Production of isolated somatic embryos from sunflower thin cell layer. Plant Cell Report 9(1):47-50.

Potrykus I (1990). Gene transfer to cereals: an assessment. Nature Biotechnology 8:535-542.

Power CJ (1987). Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. American Journal of Botany 74(4):497-503.

Radonic LM, Lewi DM, López NE, Hopp HE, Escandón AS, Bilbao ML (2015). Sunflower (Helianthus annuus L.). Methods in Molecular Biology 1224:47-55.

Rakosy-Tican E, Aurori A, Vesa S, Kovacs K-M (2007). In vitro morphogenesis of sunflower (Helianthus annuus) hypocotyl protoplasts: the effects of protoplast density, haemoglobin and spermidine. Plant Cell Tissue and Organ Culture 90(1):55-62.

Shin D-H, Kim JS, Kim IJ, Yang J, Oh SK, Chung GC, Han K-H (2000). A shoot regeneration protocol effective on diverse genotypes of sunflower (Helianthus annuus L.). In Vitro Cellular and Developmental Biology 36(4):273-278.

Sujatha M, Prabakaran AJ (2001). High frequency embryogenesis in immature zygotic embryos of sunflower. Plant Cell Tissue and Organ Culture 65(1):23-29.

Sujatha M, Vijay S, Vasavi S, Sivaraj N, Rao SC (2012). Combination of thidiazuron and 2 isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell Tissue and Organ Culture 111(3):359-372.

Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G (2002). Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215(4):577-583.

Yeung E (1998). A beginner’s guide to the study of plant structure. In: Karcher SJ (ed) Tested studies for laboratory teaching. Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), pp 125-142.

Zhang Z, Finer JJ (2015). Sunflower (Helianthus annuus L.) organogenesis from primary leaves of young seedlings preconditioned by cytokinin. Plant Cell Tissue and Organ Culture 123(3):645-655.

Witrzens B, Scowcroft WR, Downes RW, Larkin PJ (1988). Tissue culture and plant regeneration from sunflower (Helianthus annuus) and interspecific hybrids (H. tuberosus x H. annuus). Plant Cell Tissue and Organ Culture 13(1):61-76.




How to Cite

AURORI, A., MOLNAR, I. ., & RAKOSY-TICAN, E. (2020). The effect of auxins in inducing organogenesis or somatic embryogenesis in mature sunflower zygotic embryo derived apex. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 150–161.



Research Articles
DOI: 10.15835/nbha48111591