Physicochemical Quality, Antioxidant Capacity and Nutritional Value in Tuberous Roots of Some Wild Dahlia Species

  • Esteban A. RIVERA-ESPEJEL Autonomous University Chapingo, Department of Plant Science, Km. 38.5 Mexico-Texcoco Highway, CP 56230 Chapingo, State of Mexico
  • Oscar CRUZ-ALVAREZ Autonomous University of Chihuahua, Faculty of Agrotechnological Sciences, Pascual Orozco Avenue, Campus 1, Santo Niño, CP 31350 Chihuahua https://orcid.org/0000-0003-3069-5483
  • José M. MEJÍA-MUÑOZ Autonomous University Chapingo, Department of Plant Science, Km. 38.5 Mexico-Texcoco Highway, CP 56230 Chapingo, State of Mexico
  • María R. GARCÍA-MATEOS Autonomous University Chapingo, Department of Plant Science, Km. 38.5 Mexico-Texcoco Highway, CP 56230 Chapingo, State of Mexico
  • María T.B. COLINAS-LEÓN Autonomous University Chapingo, Department of Plant Science, Km. 38.5 Mexico-Texcoco Highway, CP 56230 Chapingo, State of Mexico
  • María Teresa MARTÍNEZ-DAMIÁN Autonomous University Chapingo, Department of Plant Science, Km. 38.5 Mexico-Texcoco Highway, CP 56230 Chapingo, State of Mexico
Keywords: Dahlia sp.; edible tuber; fiber crude; nutraceutical and functional food; inulin content

Abstract

The aim of this research was to evaluate the physicochemical quality, antioxidant capacity and nutritional value in tuberous roots of some wild dahlia species. The experiment was carried out in the Department of Plant Science of the Autonomous University Chapingo, Mexico. Plants were established in a randomized complete block design with five replications. The total soluble solids (TSS), titratable acidity (TA), vitamin C (VC), total phenols (TP), antioxidant capacity (AC), inulin and its proximate composition were evaluated. Among the materials analyzed, the most outstanding wild species were Dahlia campanulata, D. coccinea and D. brevis, where D. campanulata stood out for its concentration of VC (0.05 mg 100 g-1), AC (1.88 mg VCEAC g-1), inulin, DM and TC (72.25, 24.38 and 88.37%, respectively), however, the inulin content was similar to D. coccinea (66.17%), which was also outstanding with respect to the content of TP (1.74 mg GA g-1). Likewise, D. brevis presented the highest values of RFi (5.49%) and A (78.42%). According to our results, the tuberous roots of wild dahlia species can be used as food, as well as being a source of selection of traits of nutraceutic interest for genetic improvement.

 

*********

In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue.

*********

 

Metrics

Metrics Loading ...

References

Aduldecha C, Kaewpradit W, Vorasoot N, Puangbut D, Jogloy S, Patanothai A (2016). Effects of water regimes on inulin content and inulin yield of Jerusalem artichoke genotypes with different levels of drought tolerance. Turkish Journal of Agriculture and Forestry 40(3):335-343.

Akram NA, Shafiq F, Ashraf M (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science 8:613.

Alles MJ, Tessaro IC, Noreña CP (2015). Concentration and purification of yacon (Smallanthus sonchifolius) root fructooligosaccharides using membrane technology. Food Technology and Biotechnology 53(2):190-200.

Anan´ina N, Andreeva O, Mycots L, Oganesyan E (2009). Standardization of inulin extracted from Dahlia single tubers and some physicochemical properties of inulin. Pharmaceutical Chemistry Journal 43(3):157-159.

AOAC (2000). AOAC - Association of Official Analytical Chemists: Official Method of Analysis of Association of Analytical Chemist International (17th Ed). Horowitz, MD.

Arenas JYR, Delgado-Martínez EJ, Morales-Rosales EJ, Laguna-Cerda A, Franco-Mora O, Urbina-Sánchez E (2011). Rendimiento de raíces tuberosas de Dahlia variabilis wild (Desf.) bajo diferentes prácticas de manejo agronómico. [Tuberous root yield of Dahlia variabilis Wild (Desf.) under different agronomic management practices]. Phyton 80(1):107-112.

Bach V, Kidmose U, Kristensen HL, Edelenbos M (2015). Eating quality of carrots (Daucus carota L.) grown in one conventional and three organic cropping systems over three years. Journal of Agricultural and Food Chemistry 63(44):9803-9811.

Barrera WA, Picha DH (2014). Ascorbic acid, thiamin, riboflavin, and vitamin B6 contents vary between sweet potato tissue types. HortScience 49(11):1470-1475.

Başaran U, Akkbik M, Mut H, Gülümser E, Çopur DM, Koçoğlu S (2017). High-Performance liquid chromatography with refractive index detection for the determination of inulin in chicory roots. Analytical Letters 51(1-2):83-95.

Castro A, Céspedes G, Carballo S, Bergenstahl B, Tornberg E (2013). Dietary fiber, fructo oligosaccharides, and physicochemical properties of homogenized aqueous suspensions of yacon (Smallanthus sonchifolius). Food Research International 50(1):392-400.

Castro CA, Zuno-Delgadillo O, Carrasco-Ortiz MA, Harker M, Rodríguez A (2015). Novedades en el género Dahlia (Asteraceae: Coreopsideae) en Nueva Galicia, México. [Novelties on the genus dahlia (Asteraceae: Coreopsideae) in Nueva Galicia, Mexico]. Botanical Sciences 93(1):41-51.

Chandrasekara A, Kumar TJ (2016). Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. International Journal of Food Science 3631647.

Choque-Delgado GT, da Silva Cunha TWM, Maróstica Junior MR, Pastore GM (2013). Yacon (Smallanthus sonchifolius): a functional food. Plant Foods for Nutrition 68(3):222-228.

Ciobanu I, Cantor M, Stefan R, Buta E, Magyari K, Baia M (2016). The influence of storage conditions on the biochemical composition and morphology of dahlia tubers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44(2):459-465.

Das L, Bhaumik E, Raychaudhuri U, Chakraborty R (2012). Role of nutraceuticals in human health. Journal of Food Science and Technology 49(2):173-183.

Dini C, Doporto MC, García MA, Viña SZ (2013). Nutritional profile and anti-nutrient analyses of Pachyrhizus ahipa roots from different accessions. Food Research International 54(1):255-261.

Dini C, García MA, Vina SZ (2012). Non-traditional flours: frontiers between ancestral heritage and innovation. Food & Function 3(6):606-620.

Doporto MC, Mugridge A, García MA, Vina SZ (2011). Pachyrhizus ahipa (Wedd.) Parodi roots and flour: biochemical and functional characteristics. Food Chemistry 126(4):1670-1678.

Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis 24(7):1043-1048.

Frias MMN, Olivas OGI, Gonzalez AGA, Benitez EYE, Paredes AA, Jacobo CJL, … Parra QRA (2019). Yield, quality and phytochemicals of organic and conventional raspberry cultivated in Chihuahua. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(2):522-530.

Galani YJH, Mankad MP, Shah AK, Patel NJ, Acharya RR, Talati JG (2017). Effect of storage temperature on vitamin C, total phenolics, UPLC phenolic acids profile and antioxidant capacity of eleven potatoes (Solanum tuberosum L.) varieties. Horticultural Plant Journal 3(2):73-89.

Grace MH, Yousef GG, Gustafson SJ, Truong VD, Yencho GC, Lila MA (2014). Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties. Food Chemistry 145:717-724.

Grudzińska M, Czerko Z, Zarzyńska K, Borowska-Komenda M (2016). Bioactive compounds in potato tubers: effects of farming system, cooking method, and flesh color. PLoS One 11(5):e0153980.

Jagota S, Dani H (1982). A new colorimetric technique for the estimation of vitamina C using folin phenol reagent. Analytical Biochemistry 127(1):178-182.

Jiménez ML (2015). Revisión bibliográfica: el cultivo de la dalia. [Review Cultivation of the Dahlia]. Cultivos Tropicales 36(1):107-115.

Khuenpet K, Fukuoka M, Jittanit W, Sirisansaneeyakul S (2017). Spray drying of inulin component extracted from Jerusalem artichoke tuberpowder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering 194:67-78.

Lachman J, Fernández EC, Viehmannová I, Šulc M, Èepková P (2007). Total phenolic content of yacon (Smallanthus sonchifolius) rhizomes, leaves, and roots affected by genotype. New Zealand Journal of Crop and Horticultural Science 35(1):117-123.

Lara CE, Martín BO, Osorio DP, Barrera NLP, Sánchez LJA, Bautista BS (2014). Antioxidant capacity, nutritional and functional composition of edible Dahlia flowers. Revista Chapingo Serie Horticultura 20(1):101-116.

Mazid M, Khan TA, Khan ZH, Quddusi S, Mohammad F (2011). Occurrence, biosynthesis and potentialities of ascorbic acid in plants. International Journal of Plant, Animal and Environmental Sciences 1(2):167-184.

Melanie H, Susilowati A, Iskandar YM, Lotulung PD, Andayani DGS (2015). Characterization of inulin from local red dahlia (Dahlia sp. L) tubers by infrared spectroscopy. Procedia Chemistry 16:78-84.

Mitiku D, Abera T (2017). Nutrient and antinutrient composition of improved sweet potato (Ipomea batatas (L) Lam) varieties grown in eastern Ethiopia. Nutrition & Food Science 47(3):369-380.

Mussury RM, Scalon SP, Silva MA, Silva TF, Gomes H, Gassi R (2013). Postharvest conservation of the tuberous roots of Pachyrhizus ahipa (Wedd) Parodi. Anais da Academia Brasileira de Ciências 85(2):761-768.

Nsabimana C, Jiang B (2011). The chemical composition of some garden Dahlia tubers. British Food Journal 113(9):1081-1093.

Otegbayo BO, Asiedu R, Bokanga M (2012). Effects of storage on the chemical composition and food quality of yam. Journal of Food Processing and Preservation 36(5):438-445.

Özgen M, Reese RN, Tulio AZ, Miller AR, Scheerens JC (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,20-diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry 54(4):1151-1157.

Pan L, Lu R, Zhu Q, McGrath JM, Tu K (2015). Measurement of moisture, soluble solids, sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy. Postharvest Biology and Technology 102:42-50.

Petridis A, Therios L, Samouris G, Koundouras S, Giannakoula A (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry 60:1-11.

Pinela J, Carvalho AM, Ferreira ICFR (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today's society. Food and Chemical Toxicology 110:165-188.

Rautenbach F, Faber M, Laurie S, Laurie R (2010). Antioxidant capacity and antioxidant content in roots of 4 sweet potato varieties. Journal Food Science 75(5):C400-C405.

Rodríguez RMJ, Soliva FR, Martín BO (2017). Methods for determining the antioxidant capacity of food constituents. In: Yahia EM (Ed). Fruit and vegetable phytochemicals: Chemistry and human health. Hoboken, NJ, USA. John Wiley & Sons, Ltd pp 803-816.

Santana LS, Villanueva-Carvajal A, Morales-Rosales EJ, Laguna-Cerda A, Dominguez-Lopez A (2016). Extracción y evaluación de inulina a partir de dalias silvestres mexicanas (Dahlia coccinea Cav.). [Evaluation of inulin extracted from Mexican wild dahlias (Dahlia coccinea Cav.)]. Phyton 85:63-70.

Scher FC, de Oliveira Rios A, Zapata NCP (2009). Hot air drying of yacon (Smallanthus sonchifolius) and its effect on sugar concentrations. International Journal of Food Science and Technology 44(11):2169-2175.

SAS Institute Inc (2003). Base SAS® 9.1 Procedures Guide. Cary, NC:SAS Institute Inc.

Shahidi F, Zhong Y (2010). Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology 112(9):930-940.

Sreeramulu D, Raghunath M (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International 43(4):1017-1020.

Teow CC, Van-Den T, McFeeters RF, Thompson LR, Pecota VK, Yencho CG (2007). Antioxidant activities, phenolic and-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry 103(3):829-838.

Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Périlleux C, Javaux M., Lutts S (2012). Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. Journal of Experimental Botany 63(12):4359-4373.

Vizotto M, Dos Santos E, Rocha J, Cardoso P, Lettnin N, Suita L, Richter A (2017). Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: in natura and thermally processed. Ciencia Rural 47(4):1-8.

Zaldariene S, Kulaitiene J, Cerniauskiene J (2012). The quality comparison of different Jerusalem artichoke (Helianthus tuberosus L.) cultivars tubers. Zemes Ukio Mokslai 19(4):268-272.

Published
2019-05-31
How to Cite
RIVERA-ESPEJEL, E. A., CRUZ-ALVAREZ, O., MEJÍA-MUÑOZ, J. M., GARCÍA-MATEOS, M. R., COLINAS-LEÓN, M. T., & MARTÍNEZ-DAMIÁN, M. T. (2019). Physicochemical Quality, Antioxidant Capacity and Nutritional Value in Tuberous Roots of Some Wild Dahlia Species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3). https://doi.org/10.15835/nbha47311552
Section
Research Articles

Most read articles by the same author(s)