Somatic Embryogenesis Induction in Leaf and Root Explants of Allophylus edulis (A.St.-Hil., Cambess. and A. Juss.) Radlk.

Authors

  • Thiago da Silva MESSIAS Federal University of Grande Dourados, Faculty of Biological and Environmental Sciences, Highway Dourados - Itahum, Km 12 - University City, mailbox 364 - Zip Code 79804-970, Dourados, MS (BR)
  • Rodrigo Kelson Silva REZENDE Federal University of Grande Dourados, Faculty of Agrarian Sciences, Highway Dourados - Itahum, Km 12 - University City, mailbox 364 - Zip Code 79804-970, Dourados, MS (BR)
  • Luciely Faustino da SILVA Federal University of Grande Dourados, Faculty of Biological and Environmental Sciences, Highway Dourados - Itahum, Km 12 - University City, mailbox 364 - Zip Code 79804-970, Dourados, MS (BR)
  • Maílson Vieira JESUS Federal University of Grande Dourados, Faculty of Agrarian Sciences, Highway Dourados - Itahum, Km 12 - University City, mailbox 364 - Zip Code 79804-970, Dourados, MS (BR)
  • Geisianny Pereira NUNES Federal University of Grande Dourados, Faculty of Biological and Environmental Sciences, Highway Dourados - Itahum, Km 12 - University City, mailbox 364 - Zip Code 79804-970, Dourados, MS (BR)

DOI:

https://doi.org/10.15835/nbha47411504

Keywords:

in vitro morphogenesis; plant biotechnology; plant regulators

Abstract

Allophylus edulis (A.St.-Hil., Cambess. and A. Juss.) Radlk., commonly known as cocum, belongs to the Sapindaceae family. This species is of great medicinal interest, with studies showing that its fruits have antioxidant, anti-cholinesterase, and cytotoxic activity. In addition, it is used in traditional medicine as an antidiarrheal, anti-inflammatory and antihypertensive. The objective of this study was to perform somatic embryogenesis in vitro from leaf and root explants of Allophylus edulis, using different 6-benzylaminopurine (BAP) concentrations combined with naphthalene acetic acid (NAA). All treatments exhibited 100% callus formation, except for the treatment without supplementation of growth regulators. The calluses developed in treatments from leaf explants showed up to two colors (brown and brown/cream), and the highest fresh and dry mass was observed in the treatment with 0.5 mg L-1 of BAP with 0.1 mg L-1 of NAA. There was no shoot formation from the leaf explants. The callogenesis in treatments from root segments showed callus formation with up to three colors (brown, brown/cream, and cream/green), and the highest fresh and dry mass was obtained when cultivated with 2.0 mg L-1 of BAP combined with 0.1 mg L-1 of NAA. These auxin and cytokinin concentrations also showed a higher number of shoots. The interaction between auxin and cytokinin is recommended to obtain somatic embryogenesis in root segments and callus with morphological characteristics suitable for organogenesis.

References

Ahmadi B, Shariatpanahi ME, Silva JAT (2014). Efficient induction of microspore embryogenesis using abscísico acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell, Tissue and Organ Culture 116(3):343-351.

Alves EOM, Soares TS, Vieira MC, Silva CB (2008). Etnobotanical survey and medicinal plants characterization in forest fragments in Dourados-MS. Ciência e Agrotecnologia 32(2):651-658.

Anwar N, Kikuchi A, Watanabe KN (2015). Assessment of somaclonal variation for salinity tolerance in sweet potato regenerated plants. African Journal of Biotechnology 9(43):7256-7265.

Aslam J, Khan SA, Cheruth, AJ, Mujib A, Sharma MP, Srivastava PS (2011). Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis 16 in six date palm (Phoenix dactylifera L.) cultivars. Saudi Journal of Biological Sciences 18(4):369-380.

Buerki S, Lowry II PP, Alvarez N, Razafimandimbison SG, Küpfer P, Callmander MW (2010). Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. Plant Ecology and Evolution 143(2):148-159.

Carvalho MAF, Paiva R, Herrera RC, Alves E, Castro EM, Paiva PDO, Vargas DP (2015). Induction, morphologic and ultra-structural analyses of native passion fruit calluses. Revista Ceres 62(4):340-346.

Castillo L, Gonzalez-Coloma A, Gonzalez A, Diaz M, Santos E, Alonso-Paz, … Rossini C (2009). Screening of Uruguayan plants for deterrent activity against insects. Industrial Crops and Products 29(1):235-240.

Cid LPB (2010). Cultivo in vitro de plantas [Plants in vitro cultivation]. Embrapa Informação Tecnológica (3rd ed), Brasília.

Cordeiro IMCC, Lameira AO, Ohashi ST, Rosal LF (2004). Effect of bap on proliferation of Schizolobium amazonicum Huber ex Ducke (Parica) shoots, in vitro. Cerne 10(1):118-124.

Cruz CD (2013). GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum 35(3): 271-276.

Dagla, HR (2012). Plant tissue culture. Resonance 17(8):759-767.

Dibax R, Deschamps C, Bespalhok Filho JC, Vieira LGE, Molinari HBC, De Campos MKF, Quoirin, M (2010). Organogenesis and Agrobacterium tumefaciens mediated transformation of Eucalyptus saligna with P5CS gene. Biologia Plantarum 54(1):6-12.

Fehér A (2005). Why somatic plant cells start to form embryos? In: Mujib A, Šamaj J (Eds). Somatic Embryogenesis. Springer, Berlin, Heidelberg, pp 85-101.

Ferreira DAT, Sattler MC, Carvalho CR, Clarindo WR (2015). Embryogenic potential of immature zygotic embryos of Passiflora: a new advance for in vitro propagation without plant growth regulators. Plant Cell, Tissue and Organ Culture 122:629-638.

Franco IJ, Fontana VL (2011). Ervas e plantas: a medicina dos simples [Herbs and plants: a medicine of the simple]. Edelbra (12th ed), Erexim.

Garcia R, Pacheco G, Falcão E, Borges G, Mansur E (2011). Influence of type of explant, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell, Tissue and Organ Culture 106(1):47-54.

George EF, Hall MA, Klerk GJ (2013). Plant propagation by tissue culture. Springer (3rd ed), Dordrecht.

Hinojosa GF (2005). Auxina em plantas superiores: síntese e propriedades fisiológicas [Auxin in higher plants: synthesis and physiological properties]. In: Cid LPB (Ed). Hormônios vegetais em plantas superiors [Plant hormones in higher plants]. Embrapa Recursos Genéticos e Biotecnologia, Brasília, pp 15-57.

Hussain A, Qarshi IA, Nazir H, Ullah I (2012). Plant tissue culture: current status and opportunities. In: Leva A, Rinaldi LMR (Eds). Recent advances in plant in vitro culture. InTech, Croatia, pp 210.

Korbes VC (1995). Plantas medicinais [Medicinal plants]. Grafit 48:101-120.

Lorenzi H (2002). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil [Brazilian trees: identification and cultivation of native tree plants in Brazil]. Plantarum (3th ed), São Paulo.

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. ‎ Physiologia Plantarum 15(3):473-497.

Nogueira RC, Paiva R, Oliveira LM, Soares GA, Soares FP, Castro AHF, Paiva PDO (2007). Calli induction from leaf explants of murici-pequeno (Byrsonima intermedia A. Juss.). Ciência e Agrotecnologia 31(2):366-370.

Pasqualli M, Tedesco M, Tedesco SB (2015). Antiproliferative and genotoxic potential of Allophylus edulis (A.St.-Hil., Cambess. & A. Juss.) Radlk. by the Allium cepa L. test. Enciclopédia Biosfera, Centro Científico Conhecer 11(21):2365-2372.

Pêgo RG, Paiva PDO, Paiva R (2013). Micropropagation of Syngonanthus elegantulus. Ciência e Agrotecnologia 37(1):32-39.

Rizvi MZ, Das S, Sharma MP, Srivastava PS (2013). Somatic embryogenesis in monocots. In: Aslam J, Srivastava PS, Sharma MP (Eds). Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi pp 18-34.

Rocha DI, Pinto DLP, Vieira LM, Tanaka FAO, Dornelas MC, Otoni WC (2016). Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. Protoplasma 253(2):595-609.

Rodrigues M, Paiva R, Nogueira RC, Martinotto C, Silva Junior JM (2009). In vitro morphogenesis of neem from cotyledonary-derived explants. Revista Árvore 33(1):21-26.

Rosa YBCJ, Monte Bello CC, Dornelas MC (2015). Species dependent divergent responses to in vitro somatic embryo induction in Passiflora spp. Plant Cell Tissue and Organ Culture 120(1):69-77.

Somner GV, Ferrucci MS, Acevedo-Rodríguez P (2013). Allophylus. In: Lista de Espécies da Flora do Brasil [List of Species of Flora of Brazil]. Jardim Botânico do Rio de Janeiro, Rio de Janeiro.

Tirloni CAS, Macorini LFB, Santos UP, Rocha PS, Barros SV, Melo AMM, … Santos EL (2015). Evaluation of the antioxidant activity, antimicrobial effect and acute toxicity from leaves of Allophylus edulis (A. St.-Hil., A. Juss. Cambess &.) Hieron. ex Niederl. African Journal of Pharmacy and Pharmacology 9(11):353-362.

Umeo SH, Ito TM, Yokota ME, Romagnolo MB, Laverde-Junior A (2011). Evaluation of antioxidant, cytotoxic and anticholinesterase properties of Allophylus edulis (A.ST.-Hil., Cambess. & A. Juss.) Radlk. (Sapindaceae) fruits. Arquivo de Ciência e Saúde 15(2):167-171.

Yajia ME, Martí DA, Bidau AG, Amat AG, Silvestroni A (1999). Genotoxicity evaluation of Allophylus edulis (Camb.) Radlk. (Sapindaceae) aqueous extract. Acta Horticulturae 501:31-35.

Downloads

Published

2019-11-12

How to Cite

MESSIAS, T. da S., REZENDE, R. K. S., da SILVA, L. F., JESUS, M. V., & NUNES, G. P. (2019). Somatic Embryogenesis Induction in Leaf and Root Explants of Allophylus edulis (A.St.-Hil., Cambess. and A. Juss.) Radlk. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1081–1086. https://doi.org/10.15835/nbha47411504

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha47411504