Application of ITAP-PCR Techniques to Assess the Genetic Variability of Selected Cultivars of Winter Triticale (× Triticosecale Wittmack)

Keywords: CACTA; molecular markers; Mu; Revolver; triticale; transposon; transposable DNA elements

Abstract

The increasing use of triticale (× Triticosecale Wittmack) indicates that its position on the seed market is constantly strengthening; therefore, the research on its genetic variability is necessary to improve breeding process of new cultivars. The aim of the study was to assess the possibility of using the ITAP-PCR technique to analyse the genetic similarity of nine cultivars of winter triticale cultivated in Poland. Primers designed on the basis of 6 DNA transposon sequences commonly found in cereal plant genomes were used for the study. The average polymorphism rate in the genotypes used in the study was determined as 95.24%; in total, 75 bands were obtained, of which 73 were polymorphic. The PIC value ranged between 0.27 and 0.44, and was highest for the Hamlet primer. The lowest PIC value was observed for the Mutator primer. The average DI value was 0.34, MI - 4.08, AEI - 12.17 and IPI - 4.40. SI ranged from 36.7% to 1.7%. A dendrogram was created according to the unweighted pair group method with arithmetic mean (UPGMA), which in terms of genetic similarity divided the analysed winter triticale cultivars into two main similarity groups.We confirmed that ITAP technique of transposon-based marker is efficient and fast method to detect genetic variability between different winter triticale cultivars. In addition, the presence of analyzed transposon families in hexaploid triticale has not been studied earlier.

Metrics

Metrics Loading ...

References

Achremowicz B, Puchalski C, Haber T (2015). Wykorzystanie ziarna pszenżyta w przemyśle fermentacyjnym [Technological applicability of triticale grain]. Advances in Processing Technologies Food Industry 1:113-120.

Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Wurschum T. (2011). Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12(1):380.

Alzohairy AM, Gyuali G, Ramadan MF, Edris S, Sabir JSM, Jansen RK, … Bahieldin A (2014). Retrotransposon-based molecular markers for assessment of genomic diversity. Functional Plant Biology 41(8):781-789.

Bieniek W (2006). Markery DNA oparte na retrotranspozonach [Retrotransposon-based DNA marker]. Botanical News 50:15-24.

Bingham PM, Kidwell MG, Rubin GM (1982). The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family. Cell 29(3):995-1004.

Chesnokov YV, Artemyeva AM (2015). Evalution of polymorphism information of genetic diversity. Agricultural Biology 50(5):571-578.

Dice LR (1945). Measures of the amount of ecologic association between species. Ecology 26(3):297-302.

Emmons SW, Yesner L, Ruan KS, Katzenberg D (1983). Evidence for a transposon in Caenorhabditis elegans. Cell 32(1):55-65.

Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998). Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant Journal 16(5):643-650.

Furman BJ, Qualset CO, Skovmand B, Heaton JH, Corke H, Wesenberg DM (1997). Characterization and analysis of North American triticale genetic resources. Crop Science 37(6):1951-1959.

Gao D, Jiang N, Wing R, Jiang J, Jackson S (2015). Transposons play an important role in the evolution and diversification of centromeres among closely related species. Frontiers in Plant Science 6:216.

Kalendar R (2011). The use of retrotransposon-based molecular markers to analyze genetic diversity. Field and Vegetable Crops Research 48:261-274.

Kalendar R, Antonius K, Smykal P, Schulman AH (2010). iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics 121(8):1419-1430.

Kalinka A, Achrem M (2018). Reorganization of wheat and rye genomes in octoploid triticale. Planta 247(4):807-829.

Kamboj RK, Mani SC (1983). Genetic divergence in triticale. Indian Journal of Genetics and Plant Breeding 43:173-179.

Kramek A, Kociuba W (2014). Charakterystyka zasobów genowych pszenżyta ozimego pod względem polowej odporności na choroby grzybowe [Characteristics of winter Triticale genetic resources regarding field resistance to fungal diseases]. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia. Sectio E:69:113-117.

Kuleung C, Baenziger PS, Dweikat I (2006). Evaluating the genetic diversity of triticale with wheat and rye SSR markets. Crop Science 46(4):1692-1700.

Li W, Zhang P, Fellers J, Friebe B, Gill B (2004). Sequence composition, organization, and evolution of the core Triticeae genome. The Plant Journal 40(4):500-511.

Lisch D (2002). Mutator transposons. Trends in Plant Science 7:498-504.

Lu L, Chen J, Robb SM, Okumoto Y, Stajich JE, Wessler SR (2017). Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proceedings of the National Academy of Sciences of the United States of America 114(49):E10550-E10559.

Ma X-F, Gustafson J (2008). Allopolyploidization-accommodated genomic sequence changes in Triticale. Annals of Botany 101(6):825-832

Machczyńska J, Zimny J, Bednarek PT (2015). Tissue culture-induced genetic and epigenetic variation in triticale (x Triticosecale spp. Wittmack ex A. Camus 1927) regenerants . Plant Molecular Biology 89(3):279-292.

Milczarski P, Banek-Tabor A, Masojć P (2001). Wykorzystanie markerów RAPD do identyfikacji odmian pszenżyta [Application of RAPD markers for fingerprinting of triticale cultivars]. Biulletin of Plant Breeding Acclimatization Institute IHAR 218/219:261-266.

McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Institution of Washington Year Book (Carnegie Institution of Washington, Washington, DC) pp 254-260.

Mohanty S, Das AB, Ghosh N, Panda BB, Smith DW (2010). Genetic diversity of 28 wild species of fodder legume Cassia using RAPD, ISSR and SSR markers: anovel breeding strategy. Journal of Biotech Research 2:44-55.

Muehlbauer GJ, Bhau BS, Naeem BH, Syed NH, Shane H, Cho S, … Flavell AJ (2006). A hAT superfamily transposase recruited by the cereal grass genome. Molecular Genetics and Genomics 275(6):553-563.

Nei M, Li W (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76(10):5269-5273.

Orlovskay OA, Joren LV, Khotyleva (2012). Genetic polymorphism evaluation of spring triticale (xTriticosecale Wittmack) samples with use of RAPD and ISSR markers. Russian Journal of Genetics 2(6):508-512.

Pejic I, Ajmone-Marsan P, Morgante M, Kozumplicck V, Castiglioni P, Taramino G, Motto M (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics 97(8):1248-1255.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2(3):225-238.

Rajwade AV, Arora RS, Kadoo NY, Harsulkar AM, Ghorpade PB, Gupta VS (2010). Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Molecular Biotechnology 45(2):161-170.

Ramirez-Garcia J, Gabriel JL, Alonso-Ayuso M, Quemada M (2015). Quantitative characterization of five cover crop species. The Journal of Agricultural Science 153(7):1174-1185.

Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6(2):125-134.

Rogalska S, Kalinka A, Achrem M, Słomińska-Walkowiak R, Skuza L, Filip E (2004). Genetyczne elementy ruchome u roślin i innych organizmów [Transposable elements in plants and other organisms]. Space 3(53):325-342.

Seidl MF, Thomma BPHJ (2017). Transposable elements direct the coevolution between plants and microbes. Trends in Genetics 33(11):842-851.

Sornakili A, Rathinam PK, Thiruvengadum R, Kuppusamy P (2017). Comparative assessment of RAPD and ISSR markers to study genetic polymorphism in Colletotrichum gloeosporioides isolates of mango. Asian Journal of Plant Pathology 11:130-138.

Szućko I, Rogalska SM (2015). Application of ISSR-PCR, IRAP-PCR, REMAP-PCR, and ITAP-PCR in the assessment of genomic changes in the early generation of triticale. Biologia Plantarum 59(4):708-714.

Szućko I (2014). Zmiany sekwencji nukleotydowych DNA w genomach mieszańców pszenno-żytnich [Changes of nucleotide sequences of DNA in the genomes of wheat-rye hybrids]. PhD Thesis 2013.

Tomita M, Tatsurou Noguchi T, Taihachi Kawahara T (2009). Quantitative variation of Revolver transposon-like genes in synthetic wheat and their structural relationship with the LARD element. Breeding Science 59:629-636.

Tomita M, Tanaka E (2011). Genomic and RNA divergences of Revolver transposon-like gene offer chromosome tags in Triticeae. Molecular Genetics Laboratory, Tottori University pp 1-3.

Tonk FA, Tousn M, Ilker E, Istipliler D, Tatar O (2014). Evalutaion and comparison of ISSR and RAPD markers for assessment of genetic diversity in triticale genotypes. Bulgarian Journal of Agricultural Science 20(6):1413-1420.

Trebichalsky A, Kalendar R, Schulman A, Stratula O, Galova Z, Balazova Z, Chnapek M (2013). Detection of genetic relationschips among spring and winter triticale (xTriticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech Journal of Genetic and Plant Breeding 49(4):171-174.

Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z-D, Dubcovsky J, Keller B (2003a). Rapid genome divergence at orthologous LMW glutenin loci of the A and Am genome of wheat. Plant Cell 15(5):1186-1197.

Wicker T, Guyot R, Yahiaoui N, Keller B (2003b). CACTA Transposons in Triticeae. A Diverse Family of High-Copy Repetitive Elements. Institute of Plant Biology. Plant Physiology 132(1):52-61.

Xian-Min D, Lisch D (2006). Mutator transposon in maize and MULES in the plant genome. Acta Genetica Sinica 33(6):477-486.

Yaakov B, Kashkush K (2011). Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. International Journal of Plant Genomics 569826.

Zhang X, Wessler S (2004). Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proceedings of the National Academy of Sciences of the United States of America 101(15):5589-559.

Published
2019-07-25
How to Cite
SZUĆKO, I., & MĄDRACH, A. (2019). Application of ITAP-PCR Techniques to Assess the Genetic Variability of Selected Cultivars of Winter Triticale (× Triticosecale Wittmack). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 947-953. https://doi.org/10.15835/nbha47311494
Section
Research Articles