Triticum aestivum Assay - A Useful Tool for Environmental Monitoring and Toxicity Assessment

  • Alexandra JITĂREANU University of Medicine and Pharmacy “Grigore T. Popa”, Faculty of Pharmacy, Department of Toxicology, 16 Universității Street, Iași
  • Ioana-Cezara CABA University of Medicine and Pharmacy “Grigore T. Popa”, Faculty of Pharmacy, Department of Toxicology, 16 Universității Street, Iași
  • Adriana TRIFAN University of Medicine and Pharmacy “Grigore T. Popa”, Faculty of Pharmacy, Department of Pharmacognosy, 16 Universității Street, Iași
  • Silvica PĂDUREANU University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, Department of Cell Biology, 3 M. Sadoveanu Street, Iași
  • Luminița AGOROAEI University of Medicine and Pharmacy “Grigore T. Popa”, Faculty of Pharmacy, Department of Toxicology, 16 Universității Street, Iași
Keywords: environmental pollutants; genotoxicity; nanoparticles phytotoxicity; plant assay; wheat

Abstract

The present review summarizes the literature data regarding the application of Triticum aestivum assay as an alternative method for toxicity assessment of environmental pollutants or potential therapeutic agents. Plant bioassays present several advantages among other biological assays (simplicity, low cost, rapid test activation, a wide array of assessment endpoints). They present a good correlation with animal and human cells models, and are a reliable tool for genotoxicity assessment. Furthermore, in the context of toxicology guidelines that promote the substitution of assays using animal models with other bioassays, genotoxicity assays using higher plants models have gained in popularity. The present review focuses on three major aspects regarding Triticum aestivum assay - its utility in environmental pollution monitoring, its application in genotoxicity assessment studies, and its application in phytotoxicity evaluation of nanomaterials.

 

*********

In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue.

*********

Metrics

Metrics Loading ...

References

Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, … Hussain M (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health 15(1):59.

Abdelsalam NR, Abdel-Megeed A, Ali HM, Salem MZM, Al-Hayali MFA, Elshikh MS (2018). Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicology and Environmental Safety 155:76-85.

Ali S, Rizwan M, Hussain A, Zia ur Rehman M, Ali B, Yousaf B, … Ahmad P (2019). Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiology and Biochemistry 140:1-8.

An J, Zhou Q, Sun F, Zhang L (2009). Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.). Journal of Hazardous Materials 169(1-3):751-757.

Araldi RP, de Melo TC, Mendes TB, de Sá Júnior PL, Nozima BH, Ito ET, … de Cassia Stocco R (2015). Using the comet and micronucleus assays for genotoxicity studies: A review. Biomedicine and Pharmacotherapy 72:74-82.

Azimi A, Shahriari F, Fotovat A, Qale RK, Agje KH (2013). Investigation of DNA changes in wheat (Triticum aestivum L.) induced by cadmium using random amplified polymorphic DNA (RAPD) analysis. African Journal of Biotechnology 12(16):1921-1929.

Behboudi F, Tahmasebi Sarvestani Z, Kassaee MZ, Modares Sanavi SAM, Sorooshzadeh A (2017). Phytotoxicity of chitosan and SiO2 nanoparticles to seed germination of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) plants. Notulae Scientia Biologicae 9(2):242-249.

Bhat SA, Cui G, Li F, Vig AP (2019). Biomonitoring of genotoxicity of industrial wastes using plant bioassays. Bioresource Technology Reports 6:207-216.

Cao Q, Hu QH, Khan S, Wang ZJ, Lin AJ, Du X, Zhu YG (2007). Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. Journal of Hazardous Materials 148(1-2):377-382.

Chen CH, Zhou QX, Cai Z, Wang YY (2010). Effects of soil polycyclic musk and cadmium on pollutant uptake and biochemical responses of wheat (Triticum aestivum). Archives of Environmental Contamination and Toxicology 59(4):564-573.

Dias MC, Santos C, Pinto G, Silva AMS, Silva S (2019). Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. Protoplasma 256(1):69-78.

Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2018). A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regulatory Toxicology and Pharmacology 98:231-239.

Du W, Yang J, Peng Q, Liang X, Mao H (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109-116.

EPA (2012a). Ecological Effects Test Guidelines OCSPP. Test 850.4100: Seedling Emergence and Seedling Growth. Retrieved 2019 February 10 from https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0154-0023.

EPA (2012b). Ecological Effects Test Guidelines OCSPP. Test 850.4230 - Early Seedling Growth Toxicity Test. Retrieved 2019 February 10 from https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0154-0025.

Giorgetti L (2018). Effects of nanoparticles in plants: Phytotoxicity and genotoxicity assessment. In: Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (Eds). Nanomaterials in Plants, Algae and Microorganisms, Volume 2. Academic Press pp 65-87.

Hassan SH, Van Ginkel SW, Hussein MA, Abskharon R, Oh SE (2016). Toxicity assessment using different bioassays and microbial biosensors. Environment International 92:106-118.

Hussain A, Ali S, Rizwan M, Rehman MZU, Javed MR, Imran M, … Nazir R (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution 242(Pt B):1518-1526.

Hussain A, Ali S, Rizwan M, Rehman MZU, Qayyum MF, Wang H, Rinklebe J (2019). Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and Environmental Safety 173:156-164.

Iannone MF, Groppa MD, de Sousa ME, Fernández van Raap MB, Benavides MP (2016). Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environmental and Experimental Botany 131:77-88.

ISO (2013). ISO 29200:2013. Soil quality - Assessment of genotoxic effects on higher plants - Vicia faba micronucleus test. Retrieved 2019 February 10 from https://www.sis.se/api/document/preview/916555/.

Jiang L, Yang Y, Jia LX, Lin JL, Liu Y, Pan B, Lin Y (2016). Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryne in soils. Ecotoxicology and Environmental Safety 127:87-94.

Jin C, Chen Q, Sun R, Zhou Q, Liu J (2009). Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato. Ecotoxicology 18(7):878-885.

Jităreanu A, Tătărîngă G, Zbancioc A.-M, Stănescu U (2011). Toxicity of some cinnamic acid derivatives to common bean (Phaseolus vulgaris). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):130-134.

Jitareanu A, Padureanu S, Tataringa G, Tuchilus C, Stanescu U (2013). Evaluation of phytotoxic and mutagenic effects of some cinnamic acid derivatives using the Triticum test. Turkish Journal of Biology 37(6):748-756.

Jośko I, Oleszczuk P, Skwarek E (2017). Toxicity of combined mixtures of nanoparticles to plants. Journal of Hazardous Materials 331:200-209.

Juchimiuk J, Gnys A, Maluszynska J (2006). DNA damage induced by mutagens in plant and human cell nuclei in acellular comet assay. Folia Histochemica et Cytobiologica 44(2):127-131.

Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011). Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologies 334(2):118-126.

Lanier C, Manier N, Cuny D, Deram A (2015). The comet assay in higher terrestrial plant model: Review and evolutionary trends. Environmental Pollution 207:6-20.

Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, … Carriere M (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. The Science of the Total Environment 431:197-208.

Li R, He J, Xie H, Wang W, Bose SK, Sun Y, … Yin H (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules 126:91-100.

Li Y, Zhou C, Wang S, Lin Q, Ni Z, Qiu H, … Qiu R (2019). Phytotoxicity and oxidative effects of typical quaternary ammonium compounds on wheat (Triticum aestivum L.) seedlings. Environmental Science and Pollution Research International 26(25):25985-25999.

Li Y, Zhou Q, Li F, Liu X, Luo Y (2008). Effects of tetrabromobisphenol A as an emerging pollutant on wheat (Triticum aestivum) at biochemical levels. Chemosphere 74(1):119-124.

Miralles P, Johnson E, Church TL, Harris AT (2012). Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. Journal of the Royal Society Interface 9(77):3514-3527.

Mišík M, Nersesyan A, Mišíková K, Knasmueller S (2019). Micronucleus assays with meiotic pollen tetrad cells of Tradescantia and with mitotic root tip cells of Allium cepa and Vicia faba. In: Fenech M, Knasmüller S (Eds). The Micronucleus Assay in Toxicology. The Royal Society of Chemistry, London pp 290-304.

Munzuroglu O, Geckil H (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology 43(2):203-213.

OECD (2006). Guidelines for the testing of chemicals, Section 2. Test 208: Terrestrial plant test: Seedling emergence and seedling growth test. Retrieved 2019 February 10 from https://www.oecd-ilibrary.org/docserver/9789264070066-en.pdf?expires=1573726305&id=id&accname=guest&checksum=A245A64E8173F0A6DBEE475F4336ED8D.

Olaru OT, Zanfirescu A, Nitulescu GM, Nitulescu G, Dinu-Pirvu CE, Anuta V, … Seremet OC (2019). Predictive power of the Triticum root elongation test for the assessment of novel anti-proliferative therapies. International Journal of Molecular Medicine 44(1):16-24.

Palmieri MJ, Andrade-Vieira LF, Campos JM, Dos Santos Gedraite L, Davide LC (2016). Cytotoxicity of spent pot liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays. Ecotoxicology and Environmental Safety 133:442-447.

Qu B, Zhao H, Zhou J (2010). Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant. Chemosphere 79(5):555-560.

Qu Q, Ke M, Ye Y, Zhang Q, Lu T, Zhang Z, Qian H (2019). Enantioselective oxidative stress induced by S- and Rac-metolachlor in wheat (Triticum aestivum L.) seedlings. Bulletin of Environmental Contamination and Toxicology 102(3):439-445.

Qu Q, Zhang Z, Li Y, Zhou Z, Ye Y, Lu T, … Qian H (2019). Comparative molecular and metabolic responses of wheat seedlings (Triticum aestivum L.) to the imazethapyr enantiomers S-IM and R-IM. The Science of Total Environment 692:723-731.

Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2014). Growth response of wheat to titania nanoparticles application. NUST Journal of Engineering Sciences 7(1):42-46.

Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Kallerhoff J, … Arshad M (2018). Data on rhizosphere pH, phosphorus uptake and wheat growth responses upon TiO2 nanoparticles application. Data in Brief 17:890-896.

Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, … Arshad M (2018). Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: Alterations in chlorophyll content, H2O2 production, and genotoxicity. Agriculture, Ecosystems and Environment 255:95-101.

Reis GBD, Andrade-Vieira LF, Moraes IC, César PHS, Marcussi S, Davide LC (2017). Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents. Ecotoxicology and Environmental Safety 142:110-116.

Riaz L, Mahmood T, Coyne MS, Khalid A, Rashid A, Hayat MT, … Amjad M (2017). Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 177:250-257.

Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, … Waris AA (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269-277.

Sahin EC, Akgul N, Dayi S, Ismailoglu I, Vardar F, Gulsoy N, Aydin Y (2012). Determination of genotoxic effects of boron in wheat (Triticum aestivum L.) by comet assay. Journal of Biotechnology 161:46.

Saleh AM, Hassan YM, Selim S, AbdElgawad H (2019). NiO-nanoparticles induce reduced phytotoxic hazards in wheat (Triticum aestivum L.) grown under future climate CO2. Chemosphere 220:1047-1057.

Silva S, Craveiro SC, Oliveira H, Calado AJ, Pinto RJB, Silva AMS, Santos C (2017). Wheat chronic exposure to TiO2-nanoparticles: Cyto- and genotoxic approach. Plant Physiology and Biochemistry 121:89-98.

Silva S, Ferreira de Oliveira JMP, Dias MC, Silva AMS, Santos C (2019). Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent. Journal of Hazardous Materials 380:120889.

Silveira GL, Lima MG, Reis GB, Palmieri MJ, Andrade-Vieria LF (2017). Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178:359-367.

Singh D, Nath K, Sharma YK (2007). Response of wheat seed germination and seedling growth under copper stress. Journal of Environmental Biology 28(2):409-414.

Song NH, Yin XL, Chen GF, Yang H (2007). Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 68(9):1779-1787.

Sponchiado G, Adam ML, Silva CD, Soley BS, de Mello-Sampayo C, Cabrini DA, Otuki MF (2016). Quantitative genotoxicity assays for analysis of medicinal plants: A … systematic review. Journal of Ethnopharmacology 178:289-296.

Tao N, Liu G, Bai L, Tang L, Guo C (2017). Genotoxicity and growth inhibition effects of aniline on wheat. Chemosphere 169:467-473.

Trifan A, Miron A, Aprotosoaie AC, Hancianu M, Cioanca O, Gille E, Stanescu U (2013). Phytotoxicity assessment of polyphenolic extracts from Carum carvi L. fruits. Farmacia 61(1):12-19.

Trifan A, Miron A, Aprotosoaie AC, Hincianu M, Cioancă O, Gille E, Stănescu U (2012). Phytotoxicity assessment of methanolic extracts from Coriadrum sativum L. fruits. Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi 116(3):920-926.

Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, … Chauhan DK (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry 110:2-12.

Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry 110:70-81.

Truta E, Vochita G, Zamfirache MM, Olteanu Z, Rosu CM (2013). Copper-induced genotoxic effects in root meristems of Triticum aestivum L. cv. Beti. Carpathian Journal of Earth and Environmental Sciences 8(4):83-92.

Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014). Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology 171(13):1142-1148.

Vicas SI, Cavalu S, Laslo V, Tocai M, Costea TO, Moldovan L (2019). Growth, photosynthetic pigments, phenolic, glucosinolates content and antioxidant capacity of broccoli sprouts in response to nanoselenium particles supply. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(3):821-828.

Vochita G, Oprica L, Gherghel D, Mihai CT, Boukherroub R, Lobiuc A (2019). Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. Ecotoxicology and Environmental Safety 181:345-352.

Wang C, Zhang Q (2017). Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotoxicology and Environmental Safety 137:218-224.

Wang M, Zhou Q (2006). Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotoxicology and Environmental Safety 64(2):190-197.

Wang ME, Zhou QX (2006). Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels. Environmental Pollution 144(2):572-580.

Wang P, Lombi E, Zhao FJ, Kopittke PM (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science 21(8):699-712.

Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B (2019). Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. Journal of Environmental Management 241:319-327.

Wieczerzak M, Namieśnik J, Kudłak B (2016). Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. Environment International 94:341-361.

Xie X, Zhou Q, Bao Q, He Z, Bao Y (2011). Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.). Environmental Toxicology 26(4):417-423.

Xu Y, Wang J, Zhu L, Du Z, Wang J, Wei K (2018). Physiological and biochemical responses of wheat (Triticum aestivum L.) seedlings to three imidazolium-based ionic liquids in soil. Chemosphere 191:81-88.

Xu Y, Yu W, Ma Q, Zhou H, Jiang C (2017). Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicology and Environmental Safety 142:250-256.

Zhang P, Zhang R, Fang X, Song T, Cai X, Liu H, Du S (2016). Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. Journal of Hazardous Materials 317:543-551.

Zhang Q, Wang F, Xue C, Wang C, Chi S, Zhang J (2016). Comparative toxicity of nonylphenol, nonylphenol-4-ethoxylate and nonylphenol-10-ethoxylate to wheat seedlings (Triticum aestivum L.). Ecotoxicology and Environmental Safety 131:7-13.

Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, … Qian H (2018). Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution 239:689-697.

Zhou L, Xia M, Wang L, Mao H (2016). Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere 159:420-425.

Zia-ur-Rehman M, Qayyum MF, Akmal F, Maqsood MA, Rizwan M, Waqar M, Azhar M (2018). Recent progress of nanotoxicology in plants. In: Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (Eds). Nanomaterials in plants, algae, and microorganisms concepts and controversies, Volume 1. Academic Press, London pp 143-174.

Published
2019-12-04
How to Cite
JITĂREANU, A., CABA, I.-C., TRIFAN, A., PĂDUREANU, S., & AGOROAEI, L. (2019). Triticum aestivum Assay - A Useful Tool for Environmental Monitoring and Toxicity Assessment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4). https://doi.org/10.15835/nbha47411349
Section
Review Articles