Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations

  • Irina M. TODEA (MORAR) University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Manastur St., 400372 Cluj-Napoca
  • Sara GONZÁLEZ-ORENGA Universitat Politècnica de València, Mediterranean Agroforestry Institute (IAM), Camino de Vera s/n, 46022 Valencia
  • Mariola PLAZAS Universitat Politècnica de València, Institute for the Preservation and Improvement of Valencian Agrodiversity (COMAV), Camino de Vera s/n,46022 Valencia https://orcid.org/0000-0001-8090-7312
  • Adriana F. SESTRAS University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Manastur St., 400372 Cluj-Napoca https://orcid.org/0000-0001-5768-4296
  • Jaime PROHENS Universitat Politècnica de València, Institute for the Preservation and Improvement of Valencian Agrodiversity (COMAV), Camino de Vera s/n,46022 Valencia https://orcid.org/0000-0003-1181-9065
  • Oscar VICENTE Universitat Politècnica de València, Institute for the Preservation and Improvement of Valencian Agrodiversity (COMAV), Camino de Vera s/n,46022 Valencia https://orcid.org/0000-0001-5076-3784
  • Radu E. SESTRAS University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Manastur St., 400372 Cluj-Napoca https://orcid.org/0000-0003-3073-1616
  • Monica BOSCAIU Universitat Politècnica de València, Mediterranean Agroforestry Institute (IAM), Camino de Vera s/n, 46022 Valencia https://orcid.org/0000-0002-9691-4223
Keywords: climate change; forests; growth parameters; salt stress; stress tolerance; water deficit

Abstract

Drought periods are becoming more frequent and intense, due to the effects of climate change, threatening natural habitats worldwide, including European forests. Forest trees can also be affected by high soil salinity, because of the common practice of de-icing of mountain roads with NaCl in winter. We have evaluated the responses to salt and water stress of silver fir (Abies alba), an important forest species for which very limited information is available. One-year-old fir seedlings, with origin in seven different locations in Romania, were subjected to salt (watering with NaCl solutions of increasing concentrations) and water deficit (complete withholding of irrigation) treatments in the greenhouse. After one month, plant material was harvested and different morphological parameters were determined in the stressed and control plants. Both stress treatments inhibited growth of fir seedlings from all seven provenances, although quantitative differences in the responses to stress were observed between populations. Growth inhibition was established by the relative reduction – as compared to the non-stressed controls - in several parameters, such as stem elongation, root length, number of needles, or fresh weight and water content of roots and needles. Statistical multivariate analysis of the results suggested that seedlings from Valea Morii (population 6) were the most tolerant to both, water deficit and high (300 mM NaCl) salt concentrations. These results support the possibility to screen a large number of individuals from different populations, at the seedling stage, to select Abies alba genotypes with enhanced drought and/or salinity tolerance.

Metrics

Metrics Loading ...

References

Al Hassan M, López Gresa MP, Boscaiu Neagu MT, Vicente Meana Ó (2016). Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology 43:949-960.

Bartlett MK, Scoffoni C, Sack L (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters 15:393-405.

Boyer JS (1982). Plant productivity and environment. Science 218(4571):443-448.

Bresler E, Mcneal BL, Carter DL (1982). Saline and sodic soils. Principles –Dynamics – Modeling. Springer – Verlag, Berlin.

Craig DA, Alison KM, Haroun C, Dominique B, Mcdowelle N, Vennetier M, ... Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4-5):660-684.

Dering M, Kiewicz K, Boratynska K, Litkowiec M, Iszkuło G, Romo A, Boratynski A (2014). Genetic diversity and inter-specific relations of western Mediterranean relic Abies taxa as compared to the Iberian Abies alba. Flora - Morphology, Distribution, Functional Ecology of Plants 209(7):367-374.

Desplanque C, Rolland C, Michalet R (1998). Dendroécologie comparée du sapin blanc (Abies alba) et de l’épicéa commun (Picea abies) dans une vallée alpine de France. Canadian Journal of Forest Research 28:737-748.

Dobrowolska D (2008). Growth and development of silver fir (Abies alba Mill.) regeneration and restoration of the species in the Karkonosze Mountains. Journal of Forest Science 54(9):398-408.

Dobrowolska D, Bončina A, Klumpp R (2017). Ecology and silviculture of silver fir (Abies alba Mill.): a review. Journal of Forest Research 22(6):326-335.

Ellenberg HH (2009). Vegetation ecology of central Europe. Cambridge University Press, 4 th Edition.

Feurdean A, Willis KJ (2008). Long‐term variability of Abies alba in NW Romania: implications for its conservation management. Diversity and Distributions 14(6):1004-1017.

Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015). Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Frontiers in Plant Science 6(978).

Flückiger W, Braun S (1981). Perspectives of reducing the deleterious effect of de-icing salt upon vegetation. Plant and Soil 63(3):527-529.

Gilliam FS (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist 212:871-887.

Gupta B, Huang B (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 701596.

Hand M, Taffouo V, Nouck A, Nyemene K, Tonfack B, Meguekam T, Youmbi E (2017). Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45(2):481-490.

Hanewinkel M, Hummel S, Cullmann DA (2010). Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. Forest Ecology and Management 259(4):710-719.

IPCC (2014). Intergovernmental panel on climate change. In: Proceedings of the 5th assessment report, WGII, Climate Change. Impacts, adaptation, and vulnerability. Retrieved 2018 September 19 from http://www.ipcc.ch/report/ar5/wg2/.

Kern Z, Popa I (2007). Climate-growth relationship of tree species from a mixed stand of Apuseni Mts., Romania. Dendrochronologia 24:109-115.

Konnert M, Bergmann F (1995). The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Systematics and Evolution 196:19-30.

Kotuby-Amacher J, Koenig R, Kitchen B (2000). Salinity and plant tolerance. Publication AG-SO-03: Utah State University Extension, Logan.

Larcher W (2001). Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer-Verlag Berlin Heidelberg New York.

Lisar SYS, Motafakkerazad R, Hossain MM, Rahman IMM (2012). Water stress in plants: Causes, effects and responses. https://www.intechopen.com/books/water-stress/water-stress-in-plants-causes-effects-and-responses.

Muller SD, Nakagawa T, De Beaulieu JL, Court-Picon M, Carcaillet C, Miramont Roiron P, ... Bruneton H (2007). Post-glacial migration of silver fir (Abies alba Mill.) in the south-western Alps. Journal of Biogeography 34(5):876-899.

Munns R (2002). Comparative physiology of salt and water stress. Plant Cell Environment 28:239-250.

Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review in Plant Biology 59:651-681.

Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014). Response of plants to water stress. Frontiers in Plant Science 5:86.

Pârnuţă G, Stuparu E, Budeanu M, Scărlătescu V, Marica FM, Lalu I, ... Curtu AL (2011). Catalogul naţional al resurselor genetice forestiere [National Catalogue of Forest Genetic Resources] (in Romanian). Editura Silvică, Bucureşti.

Plesa I, Al Hassan M, Sestras AF, Vicente O, Boscaiu M, Sestras RE (2018). Biochemical markers of salt stress in European larch (Larix decidua). Notulae Scientia Biologicae 10(3):430-438.

Plesa IM, González-Orenga S, Al Hassan M, Sestras AF, Vicente O, Prohens J, ... Boscaiu M (2018). Effects of drought and salinity on European larch (Larix decidua Mill.) seedlings. Forests 9(6):320.

Sandoval JF, Yoo CY, Gosney MJ, Mickelbart MV (2016). Growth of Arabidopsis thaliana and Eutrema salsugineum in a closed growing system designed for quantification of plant water use. Journal of Plant Physiology 193:110-118.

Savolainen O, Bokma F, Knürr T, Kärkkäinen K, Pyhäjärvi T, Wachowiak W (2007). Adaptation of forest trees to climate change. In: Proceedings of the climate change and forest genetic diversity: implications for sustainable forest management in Europe. Paris, France, 15-16 March 2006; Biodiversity International: Rome, Italy pp 19.

Schiop ST, Al Hassan M, Sestras AF, Boscaiu M, Sestras RE, Vicente O (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees 31:1479-1490.

Şchiop TS, Al Hassan M, Sestras AF, Boscaiu M, Sestras R, Vicente O (2015). Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PloS One 10(8):e0135419.

Schütt P (1991). Abies alba. In: Tannenarten Europas und Kleinasiens. Birkhäuser, Basel pp 13-37.

Shvidenko A, Barber CV, Persson R (2005). Forest and woodland systems. In: Hassan R, Scholes R, Ash N (Eds). Ecosystems and human well-being: Current state and trends, Vol 1. Washington, DC, USA: Island Press pp 587-621.

Şofletea N, Curtu L (2007). Dendrologie. Editura Universităţii Transilvania, Braşov.

Stănescu V (1979). Dendrologie. Editura Didactică şi Pedagogică, Bucureşti.

Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis JJ, ... Woods AJ (2011). Climate change and forest diseases. Plant Pathology 60(1):133-149.

Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, ... Valsecchi V (2013). The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs 83(4):419-439.

Wolf H (2003). EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). International Plant Genetic Resources Institute, Rome, Italy.

Yadav S, Irfan M, Ahmad A, Hayat S (2011). Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology 32(5):667-685.

Zhu JK (2001). Plant salt tolerance. Trends in Plant Science 6(2):66-71.

Published
2019-12-14
How to Cite
TODEA (MORAR), I. M., GONZÁLEZ-ORENGA, S., PLAZAS, M., SESTRAS, A. F., PROHENS, J., VICENTE, O., SESTRAS, R. E., & BOSCAIU, M. (2019). Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1063-1072. https://doi.org/10.15835/nbha47411348
Section
Research Articles