Low Level of Genetic Variation and Signs of Isolation in the Native Hungarian Sea Buckthorn Population Compared to Cultivated Specimens

Authors

  • Mária HÖHN Szent István University, Faculty of Horticultural Science, Department of Botany, H-1118 Budapest, 44 Ménesi street (HU)
  • Magdolna SZELÉNYI Plant Protection Institute, Department of Zoology, Centre for Agricultural Research, HAS Herman Ottó street 15, 1022 Budapest (HU)
  • Júlia HALÁSZ Szent István University, Faculty of Horticultural Science, Department of Genetics and Plant Breeding, H-1118 Budapest, 44 Ménesi street (HU)

DOI:

https://doi.org/10.15835/nbha47311333

Keywords:

chalcone synthase intron; gender rate; gene reserve; Hippophae rhamnoides; phylogenetic tree; SCAR marker; SSR diversity

Abstract

Sea Buckthorn population from Újpest Nature Reserve, the only one assumed to be native in Hungary sustains at the periphery of Budapest city on the sandy substrate deposited by the Danube river. The study aims to characterize the gene stock preserved on this small edaphic habitat by comparing with the genetic material of planted specimens of known origin used in horticultural and gardening practice. Fragment length variations of seven nuclear microsatellite markers were evaluated and a phylogenetic tree was constructed based on sequence variation of an intron from nuclear gene encoding the chalcone synthase enzyme. Gender rate was evaluated by female specific SCAR marker. Microsatellite analysis pointed out the extremely low variation of the natural sea buckthorn population from Újpest Nature Reserve compared to the cultivated specimens, while the phylogenetic tree revealed that the natural population belongs to the genetic lineage distributed mostly in Western and Middle-Europe, and in Romania, region, which has strong links to the Balkan and the Black Sea. The analysis clearly separated the genetic material of the native Újpest population from the planted individuals from the vicinity that proved to be of allochthonous origin. The HrX2 SCAR marker revealed the dominance of the males (1:1.42). The study provides support for the autochthonous origin of the Hungarian remnant population being in reproductive isolation that suggest for its long persistence and relict status. Ex situ conservation and nature protection measures are highly recommended to maintain one of the last native sea buckthorn populations of the Pannonian region.

References

Bartish IV, Jeppsson N, Bartish GI, Lu R, Nybom H (2000). Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Plant Systematics and Evolution 225:85-101.

Bartish IV, Jeppsson N, Nybom H (1999). Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Molecular Ecology 8:791-802.

Bartish IV, Jeppsson N, Nybom H, Swenson U (2002). Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Systematic Botany 27:41-54.

Bartish IV, Kadereit JW, Comes HP (2006). Late quaternary history of Hippophae rhamnoides L. (Eleagnaceae) inferred from chalcone synthasw intron (Chsi) sequences and chloroplast DNA variation. Molecular Ecology 15:4065-4083.

Bawa AS, Khanum F, Singh B (2002). Seabuckthorn a wonder plant. Natural Products Radiance 1(4):8-14.

Borzan Z, Schlarbaum SE (1997). Cytogenetic studies of forest trees and shrub species. Proceedings of the First IUFRO Cytogenetics Working Party S2.04-08 Symposium, September 8-11, 1993, Brijuni National Park, Croatia. Hrvatske Śume.

Chawla A, Kant A, Stobdan T, Srivastava RB, Chauhan RS (2014). Cross-species application of sex linked markers in H. salicifolia and H. tibetana. Scientia Horticulturae 17:281-283.

De Jong TJ, Van der Meijden E (2004). Sex ratio of some long-lived dioecious plants in a sand dune area. Plant Biology 6(5):616-620.

Enkhtaivan G, John KM, Pandurangan M, Hur JH, Leutou AS, Kim DH (2017). Extreme effects of sea buckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi Journal of Biological Sciences 24(7):1646-1656.

Gadó GyP, Kerényi-Nagy V (2012). Közönséges homoktövis [Hippophaë rhamnoides]. In: Bartha D (Eds). Magyarország ritka fa- és cserjefajainak atlasza [Atlas of rare shrubs and trees in Hungary]. Kossuth Kiadó, Budapest pp 236–240.

Gadó Gy, Karcza Zs (1999). Veszélyeztett fajok Magyarországon. WWF Magyarország, Budapest.

Huxley A (1992). Green inheritance: the World Wildlife Fund book of plants. Four Walls Eight Windows. New York, USA.

Jain A, Ghandal R, Grover A, Raghuvanshi S, Prakash CS, Sharma PC (2010). Development of EST-based new SSR markers in seabuckthorn Physiology and Molecular Biology of Plants 160(4):375-378.

Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ (2012). Out of the Quinghai-Tibet Plateau: evindence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides (Elaeagnaceae). New Phytologist 194:1123-1133.

Kalia RK, Singh R, Rai MK, Mishra GP, Singh SR, Dhawan AK (2011). Biotechnological interventions in sea buckthorn (Hippophae L.): current status and future prospects. Trees 25(4):559-575.

Korekar G, Sharma RK, Kumar R, Meenu Bisht NC, Srivastava RB, Ahuja PS, Stobdan T (2012). Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnology Letters 34:973-978.

Kumar S, Nei M, Dudley J (2004). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.

Lacis G, Kota-Dombrovska I (2014). Assessment of genetic diversity of Latvian sea buckthorn (Hippophae rhamnoides L.) germplasm using molecular markers. Zemdirbyste-Agriculture 101(3):333-340.

Leimu R, Mutikainen PIA, Koricheva J, Fischer M (2006). How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology 94(5):942-952.

Lendvay B, Pedryc A, Höhn M (2013). Characterization of nuclear microsatellite markers for the narrow endemic Syringa josikaea Jacq. fil. ex Rchb. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:301-305.

Li C, Xu G, Zang R, Korpelainen H, Berninger F (2007). Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiology 27:399-406.

Li H, Ruan CJ, Teixeira da Silva JA (2009). Identification and genetic relationship based on ISSR analysis in a germplasm collection of sea buckthorn (Hippophae L.) from China and other countries. Scientia Horticulturae 123:263-271.

Li TS, Schroeder WR (1996). Sea buckthorn (Hippophae rhamnoides L.): A multipurpose plant. HortTechology 6(4):370-380.

Lian YS, Chen XL, Lian H (1998). Systematic classification of the genus Hippophae L. Seabuckthorn Research 1:3-23.

Mangla Y, Chaudhary M, Gupta H, Thakur R, Goel, S, Raina SN, Tandon R (2015). Facultative apomixis and development of fruit in a deciduous shrub with medicinal and nutritional uses. AoB Plants 7:plv098.

Massei G, Watkins R, Hartley SE (2006). Sex-related growth and secondary compounds in Juniperus oxycedrus macrocarpa. Acta Oecologica 29:135-140.

Mátyás Cs (2002). A környezetet terhelő antropogén hatások lehetséges genetikai következményei. In: Mátyás C (Eds.). Erdészeti-természetvédelmi genetika. Mezőgazda Kiadó, Budapest pp 255-260.

Raina SN, Jain S, Sehgal D, Kumar A, Dar TH, Bhat V, Rani V (2012). Diversity and relationships of multipurpose seabuckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers. Genetic Resources and Crop Evolution 59(6):1033-1053.

Rousi A (1965). Observation on the cytology and variation of European and Asiatic populations of Hippophae rhamnoides. Annales Botanici Fennici 2:1-18.

Sezen I, Ercisli S, Cakir O, Koc A, Temim E, Hadziabulic A (2015). Biodiversity and landscape use of sea buckthorn (Hippophae rhamnoides L.) in the Coruh valley of Turkey. Erwerbs-Obstbau 57(1):23-28.

Sheng HM, An LZ, Chen T, Xu SJ, Lu GX, Zheng XL, Pu LL, Lu YJ, Lian YS (2006). Analysis of genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Systematics and Evolution 260:25-37.

Srihari JM, Verma B, Kumar N, Chahota RK, Singh V, Rathour R, Sharma TR (2013). Analysis of molecular genetic diversity and population structure in sea buckthorn (Hippophae spp L.) from north-western Himalayan region of India. Journal of Medicinal Plants Research, 7(43):3183-3196.

Strand AE, Leebens-Mack J, Milligan BG (1997). Nuclear DNA-based markers for plant evolutionary biology. Molecular Ecology 6:113-118.

Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002). Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Systematics and Evolution 235:121-134.

Swenson U, Bartish IV (2003). Taxonomic synopsis of Hippophae (Elaeagnaceae). Nordic Journal of Botany 22:369-374.

Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Resources 22(22):4673-4680.

Tian C, Lei Y, Shi S, Nan P, Chen J, Zhong Y (2004). Genetic diversity of sea buckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New Forests 27(3):229-237.

Wang A, Zhang Q, Wan D, Liu J (2008). Nine microsatellite DNA primers for Hippophae rhamnoides ssp. sinensis (Elaeagnaceae). Conservation Genetics 9:969-971.

Downloads

Published

2019-05-15

How to Cite

HÖHN, M., SZELÉNYI, M., & HALÁSZ, J. (2019). Low Level of Genetic Variation and Signs of Isolation in the Native Hungarian Sea Buckthorn Population Compared to Cultivated Specimens. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 699–705. https://doi.org/10.15835/nbha47311333

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha47311333