Cryopreservation of Vasconcellea quercifolia St.-Hil (Caricaceae) Zygotic Embryos


  • Cibele M. GALLO Universidade Federal de Alagoas, Centro de Ciências Agrárias (CECA), BR 104, CEP 57100-000, Rio Largo, AL (BR)
  • Renato PAIVA Universidade Federal de Lavras, Campus Universitário, Setor de Fisiologia Vegetal, CEP 37200-000, Lavras, MG (BR)
  • Rodrigo T. FREITAS Universidade Federal de Lavras, Campus Universitário, Setor de Fisiologia Vegetal, CEP 37200-000, Lavras, MG (BR)
  • Michele V. REIS Universidade Federal de Lavras, Campus Universitário, Setor de Fisiologia Vegetal, CEP 37200-000, Lavras, MG (BR)
  • Diogo P.C. SILVA Universidade Federal de Lavras, Campus Universitário, Setor de Fisiologia Vegetal, CEP 37200-000, Lavras, MG (BR)
  • Luciano C. SILVA Universidade Federal da Paraíba, Centro de Biotecnologia, Castelo Branco, CEP 58051-900, João Pessoa, PB (BR)



Caricaceae, dehydration, in vitro conservation, silica gel, tropical fruit


Vasconcellea quercifolia A. St.-Hil. (Caricaceae) is a tropical fruit species native to Brazil, with a great importance in plant breeding programs. The V. quercifolia has a resistance to the main diseases of Caricaceae, Papaya Ringspot Virus (PRSV). Considering its potential, cryopreservation becomes a tool for the conservation of this species. The objective of this paper was to study the cryopreservation of V. quercifolia zygotic embryos through dehydration in silica gel. Excised zygotic embryos were dehydrated in silica at 0, 20, 40, 80 and 100 minutes and then inoculated in MS medium. The percentage of germinated and recovered embryos, and growth analysis were evaluated, besides water content. Subsequently, they were acclimatized in a growth room with temperature controlled. For cryopreservation, the embryos were excised and dehydrated in silica for 0, 20, 40 and 60 minutes, immersed in Liquid Nitrogen (LN) for 1 hour, thawed in Recovery Solution (RS) and inoculated in MS medium. After 30 days, the percentage of germinated and recovered embryos was evaluated. The silica gel promotes a fast dehydrate of embryos. The results showed that embryo dehydration affected seedling development, and dehydration for over 20 minutes showed a reduction in all evaluated parameters. The plantlets regenerated from embryos dehydrate survive the acclimatization. It was possible to cryopreserve the V. quercifolia zygotic embryos when the dehydration time of 20 minutes by silica gel was used.


Metrics Loading ...


Alamery S, Drew R (2014). Studies on the genetics of prsv-p resistance genes in intergeneric hybrids between Carica papaya and Vasconcellea quercifolia. Acta Horticulturae 1022:55-61.

Caetano MC, Burbano TCL, Sierra CLS, Tique CAP, Nunes DGC (2008). Citogenética de especies de Vasconcellea (Caricaceae). Acta Agronomy 57:241-245.

Carmona-Martín E, Regalado JJ, Perán-Quesada R, Encina CL (2018). Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huétor) and evaluation of their genetic stability. Plant Cell, Tissue and Organ Culture 133(3):395-403.

Chaves-Bedoya G, Ortiz-Rojas LY (2015). Genetic variability of Papaya ringspot virus isolates in Norte de Santander-Colombia. Agronomía Colombiana 33(2):184-193.

Chmielarz P, Michalak M, Palucka M, Wasilenczyk U (2011). Successful cryopreservation of Quercus robur plumules. Plant Cell Reports 30:1405-1414.

Elliott GD, Wang S, Fuller BJ (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74-91.

Engelmann F (2011). Use of biotechnologies for the conservation of plant biodiversity. In vitro Cellular & Developmental Biology-Plant 47:5-16.

Engelmann F, Dussert S (2013). Cryopreservation. In: Normah MN, Chin HF, Reed BM (Eds). Conservation of Tropical Plant Species. Springer Publication, New York.

Facico C, Machado RAF, Souza LM, Zoldan SR, Quadri MGN (2015) Characterization of the mucilage extracted from jaracatiá (Carica quercifolia (A. St. Hil.) Hieron). Carbohydrate Polymers 131:370-376.

Falanga V (2002). Wound bed preparation and the role of enzymes: a case for multiple actions of therapeutic agents. Wounds 14:47-57.

Faria CVN, Paiva R, Freitas RT, Figueiredo JRM, Silva DPC, Reis MV (2016). Cryopreservation of Physalis angulata L. seeds through dehydration on silica gel. Plant Cell Culture & Micropropagation 12(2):27-33.

Ferreira DF (2014). Sisvar: A guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia 38:109-112.

Fonseca SCL, Freire HB (2003). Sementes recalcitrantes: problemas na pós-colheita. Bragantia 62(2):297-303.

Freitas RT, Paiva R, Sales TS, Silva DPC, Reis MV, Souza AC, Rosa SDVF (2016). Criopreservation of Coffea arabica L. zygotic embryos by vitrification. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44(2):445-451.

Kanchana-Udomkan C, Drew RA, Ford R (2016). A kinase gene potentially implicated in resistance to Papaya ringspot virus in Vasconcellea quercifolia. Acta Horticulturae 1111:41-48.

Lambardi M, Ozudogru EA, Barberini S, Danti R (2018). Strategies for fast multiplication and conservation of forest trees by somatic embryogenesis and cryopreservation: a case study with cypress (Cupressus sempervirens L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(1):32-38.

Michalak M, Plitta BP, Tylkowski T, Chmielarz P, Suszka J (2015). Desiccation tolerance and cryopreservation of seeds of black poplar (Populus nigra L.), a disappearing tree species in Europe. European Journal of Forest Research 134:53-60.

Murashige T, Skoog F (1962). A revised medium for rapid growth and biomassay with tobacco tissue cultures. Physiologia Plantarum 15(3):473-479.

Naidoo S, Pammenter NW, Berjak P (2011). Effects of partial dehydration of recalcitrant Haemanthus montanus zygotic embryos on vigour of recovered seedlings. South African Journal of Botany 77(1):193-202.

Panis B, Swennen R, Engelman F (2001) Cryopreservation of plant germplasm. Acta Horticulturae 650:79-86.

Pérez-Rodríguez JL, Escriba RCR, González GYG, Olmedo GJL, Martínez-Montero ME (2017). Effect of desiccation on physiological and biochemical indicators associated with the germination and vigor of cryopreserved seeds of Nicotiana tabacum L. cv. Sancti Spíritus 96. In Vitro Cellular & Developmental Biology-Plant 53(4):440-448.

Pinto MS, Paiva R, Silva DPCD, Santos PAA, Freitas RTD, Silva LC (2016). Cryopreservation of coffee zygotic embryos: dehydration and osmotic rehydration. Ciência e Agrotecnologia 40(4):380-389.

Porto JMP, Paiva R, Campos NA, Reis MV, Souza AC, Santos PAA, Braga FT (2014). Cryopreservation of seeds of barbatimão with different water contents. Australian Journal of Basic and Applied Sciences 8(13):250-256.

Sakai S, Kobayashi IO (1990). Cryopreservation of nucellar cells of navel orange (Citrus Sinensis Osb Var Brasiliensis Tanaka) by vitrification. Plant Cell Reports 9:30-33.

Scocchi A, Vila S, Mroginski L, Engelmann F (2007). Cryopreservation of somatic embryos of paradise tree (Melia azedarach L.). CryoLetters 28(4):281-290.

Sershen B, Varghese B, Pammenter NW, Berjak P (2012). Rate of dehydration, state of subcellular organization and nature of cryoprotection are critical factors contributing to the variable success of cryopreservation: studies on recalcitrant zygotic embryos of Haemanthus montanus. Protoplasma 249:171-186.

Sherlock G, Block W, Benson EE (2005).Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant. CryoLetters 26(1):45-54.

Silva LC, Paiva R, Swennen R, Edwige A, Panis B (2014). Cryopreservation of Byrsonima intermedia embryos followed by room temperature thawing. Acta Scientiarum Agronomy 36(3):309-315.

Silva DPC, Paiva PDO, Paiva R, Alves E, Porto JMP, Reis MV (2015). Anatomic aspects of gerbera plants during acclimatization. Plant Cell Culture 11(1): 27-32.

Sopade PA, Samosir YM, Rival A, Adkins SW (2010). Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology 61(3):289-296.

Torres MJ, Trejo SA, Obregón WD, Avilés FX, López LM, Natalucci CL (2012). Characterization of the proteolytic system present in Vasconcellea quercifolia latex. Planta 236:1471-1484.

Urbanova M, Kosuth J, Cellarova E (2006). Genetic and biochemical analysis of Hypericum perforatum L. plants regenerated after cryopreservation. Plant Cell Reports 25:140-147.

Wesley-Smith J, Berjak P, Pammenter NW, Walters C (2014). Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: An ultrastructural study of factors affecting cell and ice structures. Annals of Botany 113(4):695-709.




How to Cite

GALLO, C. M., PAIVA, R., FREITAS, R. T., REIS, M. V., SILVA, D. P., & SILVA, L. C. (2018). Cryopreservation of Vasconcellea quercifolia St.-Hil (Caricaceae) Zygotic Embryos. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 63–69.



Research Articles
DOI: 10.15835/nbha47111266

Most read articles by the same author(s)