Effects of Exogenous Putrescine on Mycorrhiza, Root System Architecture, and Physiological Traits of Glomus mosseae-Colonized Trifoliate Orange Seedlings

Qiang-Sheng WU, Ying-Ning ZOU*, Min LIU, Kun CHENG
Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei Province, 434025, P.R. China; wuqiangsh@163.com (*corresponding author)

Abstract
Putrescine (Put) as one of the important polyamines (PAs) has been identified to regulate mycorrhizal development of citrus plants. The present study was to screen an efficient concentration of Put application at the range of 0.05-1 mM on the trifoliate orange (Poncirus trifoliata) seedlings colonized by Glomus mosseae, in terms of growth, root system architecture, and chlorophyll and carbohydrate contents. Compared to the non-Put treatment, all the Put treatments, especially 0.05 mM Put, significantly increased mycorrhizal colonization of tap root in addition to first, second, and third order lateral roots. The mycorrhizal seedlings treated by 0.05, 0.1, and 1 mM Put showed greater growth (stem diameter, height, leaf number, and fresh mass) and root morphological properties (tap root length, projected and surface areas, and volume) and higher numbers of first, second, and third order lateral roots. Bio-molecules like chlorophyll a, total chlorophyll, and carotenoid contents of the seedlings were significantly increased by the Put treatments at 0.05-1 mM. All exogenous Put application at the range of 0.05-1 mM significantly decreased sucrose contents but increased glucose contents of leaves and roots. This study suggests that exogenous Put can significantly improve growth performance and root system architecture, besides changes in physiological traits of AMF seedlings. The 0.05 mM concentration of Put showed the best effects.

Keywords: arbuscular mycorrhizal fungi, citrus, glucose, lateral root, polyamine, sucrose

Introduction
Polyamines (PAs) mainly including spermine (Spm), spermidine (Spd), and putrescine (Put) are a kind of organic polycations found in all compartments of the plant cell (Mapelli et al., 2008). PAs in plants are involved in a variety of physiological and developmental processes, such as regulation of cell proliferation, somatic embryogenesis, flower and fruit development, replication, transcription, translation, membrane and cell wall stabilization, chromatin organization, ribosome biogenesis, and programmed cell death (Hussain et al., 2011). PAs also act as a mysterious modulator involved in plant responses to several stresses. As a result, PAs are widely used as a new type of plant growth regulators.

Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, are obligate biotrophs and can form the mutualistic symbiosis with 80% of the terrestrial plants (Bainard et al., 2011). The arbuscular mycorrhizal (AM) symbiosis contributes the transfer of mineral nutrients and water from the soil to the host plant (Smith and Read, 2008). In return, the symbiosis obtains carbohydrates from the host plants to maintain fungal growth. A study showed that Put was the most abundant PA specie in un-germinated spores of G. mosseae (El Ghachtouli et al., 1996a). Spore germination rate and hyphal growth of G. mosseae in vitro were stimulated by exogenous Put at the range of 50-200 mg/L but were inhibited at 500 mg/L (Zhang et al., 2003). On the other hand, PAs may be an important regulatory factor in formation of AM symbiosis. In trifoliate orange (Poncirus trifoliata) seedlings, exogenous Spd, Spm, and Put (100 mg/L) obviously altered mycorrhizal colonization, whereas Put was the most effective (Wu and Zou, 2009). Exogenous Put (100 mg/L) also participated in regulating mycorrhizal development of Citrus tangerine inoculated with Glomus mosseae (Wu et al., 2010c). As stated above, Put has the best effect on mycorrhizal development of citrus plants, which is dependent on concentration of Put. Therefore, screening an efficient concentration of Put is an urgent problem in mycorrhizal research of citrus and will also provide technical reference for the regulation of citrus mycorrhiza and plant growth.

The purpose of the present study was to screen an efficient concentration of exogenous Put at the range of 0.05-1 mM in the trifoliate orange seedlings colonized by G. mosseae, in terms of the analysis of growth, root system architecture (RSA), chlorophyll contents, and carbohydrate contents.

Materials and methods

Experiment design
The experiment was one factorial design with completely randomized arrangement, which consisted of
0, 0.05, 0.1, 0.5, and 1.0 mmol/L concentrations of Put (namely, Put-0, Put-0.05, Put-0.1, Put-0.5, and Put-1.0) respectively applied to mycorrhizal trifoliate orange seedlings. Each treatment was repeated three replicates for a total of 15 pots.

Plant culture

Seeds of trifoliate orange were disinfected in 70% of alcohol for 5 minutes, rinsed four times with distilled water and sowed in plastic pots (19 cm upper diameter × 17 cm height × 13 cm bottom diameter) filled with 3.2 kg of autoclaved (0.11 Mpa, 121°C, 2 h) yellow soil. Fifteen gram inoculum of *Glomus mosseae* (Nicolson & Gerdemann) Gerdemann & Trappe containing infected root segments of white clover (*Trifolium repens*), extraradical hyphae, and spores, was inoculated into the pots at the time of sowing. The pots were placed in a naturally ventilated plastic house from March 15 to August 24, 2011.

After 94 days of the acclimatization, the inoculated seedlings per pot were subjected to exogenous Put treatment with 250 mL of 0.05, 0.1, 0.5, and 1.0 mmol/L Put (American Sigma Company) concentrations, respectively. Non-Put pots were supplied with 250 mL distilled water as the control. All the mycorrhizal inoculated seedlings were irrigated weekly with the exogenous Put. During the entire test period, the seedlings were not supplied with any nutrients.

Variable measurements

After 10 weeks of exogenous Put treatment, shoots and roots of the mycorrhizal seedlings were separately harvested on August 24, 2011. Plant height (cm), stem diameter (cm), and leaf number per plant were determined before the harvest.

The root systems were gently cleaned with the tap water and scanned by the Epson Perfection V700 Photo Dual Lens System (J221A, Indonesia, Seiko Epson Corporation). The obtained photographs of the root systems were analyzed with the professional WinRHIZO software in 2007 version (Regent Instruments Inc., Quebec, Canada), and the traits of the RSA including total length, projected area, surface area, average diameter, and volume were recorded. The length of tap root was determined using a vernier caliper. Lateral root numbers at all levels were manually counted.

Chlorophyll content was extracted with 80% of acetone from 0.15 g of fresh leaf samples in the dark. The absorbance was measured at 663, 646 and 470 nm in a UV/VIS spectrophotometer. Several chlorophyll concentrations were calculated using the following equations (Li, 2000):

\[
\text{Chlorophyll } a = 12.21 \times A_{663} - 2.81 \times A_{646} \\
\text{Chlorophyll } b = 20.13 \times A_{646} - 5.03 \times A_{663} \\
\text{Carotenoid} = [1000 \times A_{470} - 3.27 \times \text{Chlorophyll } a - 104 \times \text{Chlorophyll } b] / 229 \\
\text{Total chlorophyll} = \text{chlorophyll } a + \text{chlorophyll } b
\]

Glucose and sucrose of leaf and root samples were extracted with 80% of ethanol and determined by the colorimetric method of Zhang and Zai (2004) at 460 and 480 nm, respectively.

Approximate 1-cm root segments from tap root and several order lateral roots were cleaned with 10% (w/v) of KOH and stained with 0.05% (w/v) of trypan blue in lactic glycerol (Phillips and Hayman, 1970). The stained root segments were examined under a biological microscope, and then the root mycorrhizal colonization was estimated using the formula of Wu and Zou (2009).

Statistical analysis

Data were analyzed using ANOVA (SAS, Version 8.1), and Duncan’s multiple range test (*p*<0.05) was used to compare significance of the means.

Results and discussion

Mycorrhizal colonization of different order root systems

Previous studies have shown that PAs especially Put stimulated mycorrhizal formation and hyphal growth in *Pisum sativum* (El Ghachtouli et al., 1996b), *Citrus tangerine* (Wu et al., 2010c), and *Poncirus trifoliata* (Wu et al., 2010b). In the present study, compared with the non-Put treatment, all the Put treatments significantly increased the mycorrhizal colonization of the tap root, first-order later root, second-order later root, and third-order later root, except for the first-order later root treated by Put-1, the second-order and third-order later roots by Put-0.5 (Tab. 1). Meanwhile, compared to other Put treatment, the Put-0.05 treatment exhibited significantly highest effects on root mycorrhizal colonization. These results suggest that exogenous Put promoted mycorrhizal colonization at all root levels, although affected by varying Put levels.

Plant growth

Compared with the non-Put control, all four exogenous Put treatments significantly increased plant height, stem diameter, leaf number per plant, and shoot, root, and total dry weights (Tab. 2). These results confirmed the studies that PAs played important roles in plant growth.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tap root</th>
<th>First-order</th>
<th>Second-order</th>
<th>Third-order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put-0</td>
<td>13.0±1.6c</td>
<td>18.0±0.6c</td>
<td>20.0±2.2c</td>
<td>14.0±2.5c</td>
</tr>
<tr>
<td>Put-0.05</td>
<td>30.0±5.5a</td>
<td>34.3±3.8a</td>
<td>38.0±2.2a</td>
<td>46.3±3.8a</td>
</tr>
<tr>
<td>Put-0.1</td>
<td>27.0±3.0ab</td>
<td>27.0±4.2b</td>
<td>29.3±4.7b</td>
<td>27.8±7.8b</td>
</tr>
<tr>
<td>Put-0.5</td>
<td>23.7±1.1b</td>
<td>27.0±5.2b</td>
<td>18.7±1.7c</td>
<td>18.8±2.4c</td>
</tr>
<tr>
<td>Put-1</td>
<td>31.7±2.3a</td>
<td>15.0±1.4c</td>
<td>27.3±4.3b</td>
<td>28.3±4.9b</td>
</tr>
</tbody>
</table>

Note: Means ± SE (*n*=3) followed by the same letter within a column are not significant difference between various treatments at 5% level

Tab. 1. Root mycorrhizal colonization of different order root systems in trifoliate orange seedlings treated by different concentrations of Put (mM)
Tab. 2. Effect of exogenous Put (mM) on growth traits of trifoliate orange seedlings colonized by Glomus mosseae

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stem diameter (cm)</th>
<th>Height (cm)</th>
<th>Leaf number per plant</th>
<th>Dry weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put-0</td>
<td>0.23±0.004d</td>
<td>28±2.7c</td>
<td>25.1±0.7d</td>
<td>0.68±0.04c</td>
</tr>
<tr>
<td>Put-0.05</td>
<td>0.29±0.003ab</td>
<td>44±1.6a</td>
<td>33±1.5a</td>
<td>1.21±0.09a</td>
</tr>
<tr>
<td>Put-0.1</td>
<td>0.28±0.001b</td>
<td>37±2.5b</td>
<td>297±1.2b</td>
<td>1.01±0.02b</td>
</tr>
<tr>
<td>Put-0.5</td>
<td>0.269±0.007c</td>
<td>30.2±3.2c</td>
<td>25.9±1.6cd</td>
<td>0.71±0.05c</td>
</tr>
<tr>
<td>Put-1</td>
<td>0.308±0.010a</td>
<td>40.2±1.4ab</td>
<td>28.3±2.0bc</td>
<td>1.18±0.07a</td>
</tr>
</tbody>
</table>

Note: Means ± SE (n=3) followed by the same letter within a column are not significant difference between various treatments at 5% level.

and development (Movahed et al., 2012; Scholten, 1998). Significant effect of Put on the growth traits of trifoliate orange ranked in the order of Put-0.05 > Put-1.0 > Put-0.1 > Put-0.5 (Tab. 2). The result is in agreement with the finding of Movahed et al. (2012) in strawberry applied by 0.5, 1, and 1.5 mM Put. The growth improvement might be due to the fact that Put acts as a hormonal second-messenger of cell proliferation and differentiation in many processes (Steiner et al., 2007).

Root system architecture

Plant roots have the roles in nutrient and water uptake, anchoring and mechanical support, storage functions, and the major interface between the plant and various biotic and abiotic factors (Smith and de Smet, 2012). Meanwhile, root system architecture (RSA) is a key determinant of nutrient- and water-use efficiency in plants. There are free and macromolecule-bound PAs presented in root systems, which play a role in root apex and during lateral and adventitious root formation (Couée et al., 2004). In the present study, the Put-treated seedlings generally exhibited significantly higher total length, tap root length, projected area, surface area, and volume, except root average diameter, compared to the non-Put controls (Tab. 3). The results are consistent with the result of Ben-Hayyim et al. (1996) in tobacco and indicate that Put also is a key factor of RSA regulation in trifoliate orange.

In the present study, the mycorrhizal trifoliate orange seedlings possessed three orders of lateral roots, and the order in number of lateral roots ranked as second-order > first-order > third-order (Tab. 4). In addition, all exogenous Put applications notably increased the numbers of the first-order lateral root and second-order lateral root, except for the second-order lateral root under Put-0.5 (Tab. 4). In contrast, only Put-0.05 and Put-1 treatments significantly increased the number of third-order lateral root in all orders. Meanwhile, 0.05 mM concentration of Put exhibited the best effects on numbers of lateral roots in all orders. This is consistent with the finding of Sun et al. (2010), who observed that the optimal concentration of Put to promote the number of lateral root in Lactuca sativa was 0.05 mM among 0.05-1 mM. The increase in numbers of lateral roots at all orders caused by exogenous Put can, in some instances, be attributed to stimulating meristem activity (Schwartz et al., 1986), inducing NO signal (Sun et al., 2010), and regulating levels of endogenous auxins and cytokinins (Sharma et al., 1997).

Tab. 3. Effects of exogenous Put (mM) on root morphological characteristics of trifoliate orange seedlings colonized by Glomus mosseae

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total length (cm)</th>
<th>Tap root length (cm)</th>
<th>Average Diameter (mm)</th>
<th>Projected area (cm²)</th>
<th>Surface area (cm²)</th>
<th>Volume (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put-0</td>
<td>27±3.5b</td>
<td>20±3b</td>
<td>0.4±0.02a</td>
<td>12±2c</td>
<td>36±5b</td>
<td>0.38±0.06c</td>
</tr>
<tr>
<td>Put-0.05</td>
<td>468±5.3a</td>
<td>30±3a</td>
<td>0.4±0.05a</td>
<td>20±4a</td>
<td>62±8a</td>
<td>0.66±0.07a</td>
</tr>
<tr>
<td>Put-0.1</td>
<td>452±3.2a</td>
<td>29±2a</td>
<td>0.4±0.01a</td>
<td>20±2a</td>
<td>63±5a</td>
<td>0.69±0.06a</td>
</tr>
<tr>
<td>Put-0.5</td>
<td>315±1.2b</td>
<td>28±2a</td>
<td>0.4±0.03a</td>
<td>14±1bc</td>
<td>45±4b</td>
<td>0.51±0.08b</td>
</tr>
<tr>
<td>Put-1</td>
<td>446±4.3a</td>
<td>31±2a</td>
<td>0.4±0.02a</td>
<td>18±2ab</td>
<td>57±5a</td>
<td>0.59±0.06ab</td>
</tr>
</tbody>
</table>

Note: Means ± SE (n=3) followed by the same letter within a column are not significant difference between various treatments at 5% level.

Tab. 4. Effect of exogenous Put (mM) on numbers of different order lateral roots of trifoliate orange seedlings colonized by Glomus mosseae

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of lateral root</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First-order</td>
</tr>
<tr>
<td>Put-0</td>
<td>46±2d</td>
</tr>
<tr>
<td>Put-0.05</td>
<td>63±2a</td>
</tr>
<tr>
<td>Put-0.1</td>
<td>56±2bc</td>
</tr>
<tr>
<td>Put-0.5</td>
<td>53±3c</td>
</tr>
<tr>
<td>Put-1</td>
<td>58±3b</td>
</tr>
</tbody>
</table>

Note: Means ± SE (n=3) followed by the same letter within a column are not significant difference between various treatments at 5% level.
Chlorophyll

PAs are involved in photosynthetic functions (Margoskiak et al., 1990). In the present work, supplied exogenous Put significantly increased contents of chlorophyll a, carotenoid, and total chlorophyll, compared with the non-Put treatment (Tab. 5). Meanwhile, 0.05 mM concentration of Put represented the best effects. Content of chlorophyll b was not affected by the exogenous Put treatments, except that Put-0.5 application significantly decreased content of chlorophyll b. This is in agreement with the result of Unal et al. (2008) in Physcia semipinnata by additional PAs under UV-A radiation. In fact, chloroplasts themselves enrich a certain amount of PAs including Put, which can benefit formation of chlorophyll, especially chlorophyll a but not chlorophyll b (Shu et al., 2012). However, high concentrations of PAs may also destroy the structure of chloroplasts, which is dependent on light conditions. In the present study, 1 mM concentration of Put still protects the structure of chloroplast, and a 0.05 mM concentration of Put would have a better ability to increase concentrations of chlorophyll in mycorrhizal trifoliate orange seedlings.

Carbohydrates

Not only chloroplasts but also photosynthetic sub-complexes possess certain PAs involved in stabilizing structure and function of the photosynthetic apparatus (Demetriou et al., 2007), resulting in an increased photosynthetic rate. The present study showed that exogenous Put significantly decreased leaf and root sucrose content but increased leaf and root glucose content, compared with the non-Put control (Fig. 1). Chen et al. (2011) found the decrease of leaf carbohydrates and root total sugar and sucrose in Cucumis sativus supplied with exogenous Spd. These results are in agreement with the finding of Wu et al. (2010a) in Citrus tangerine colonized by G. mosseae. On the other hand, root mycorrhizal symbiosis could change the allocation of plant carbohydrates (Pang and Paul, 1980). Typically, AMF need to consume hexose

Tab. 5. Effects of exogenous Put (mM) on chlorophyll and carotenoid contents of trifoliate orange seedlings colonized by Glomus mosseae

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Chlorophyll a (mg/g FW)</th>
<th>Chlorophyll b (mg/g FW)</th>
<th>Total chlorophyll (mg/g FW)</th>
<th>Carotenoid (mg/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put-0</td>
<td>1.28±0.10c</td>
<td>0.63±0.06a</td>
<td>1.91±0.11c</td>
<td>0.21±0.03b</td>
</tr>
<tr>
<td>Put-0.05</td>
<td>1.87±0.03a</td>
<td>0.58±0.01a</td>
<td>2.45±0.04a</td>
<td>0.37±0.04a</td>
</tr>
<tr>
<td>Put-0.1</td>
<td>1.75±0.09ab</td>
<td>0.56±0.14a</td>
<td>2.31±0.15a</td>
<td>0.35±0.09a</td>
</tr>
<tr>
<td>Put-0.5</td>
<td>1.68±0.09b</td>
<td>0.41±0.11b</td>
<td>2.09±0.10b</td>
<td>0.33±0.03a</td>
</tr>
<tr>
<td>Put-1</td>
<td>1.71±0.07b</td>
<td>0.63±0.03a</td>
<td>2.34±0.04a</td>
<td>0.32±0.04a</td>
</tr>
</tbody>
</table>

Note: Means ± SE (n=3) followed by the same letter within a column are not significant difference between various treatments at 5% level.
to sustain its growth and development (Bago et al., 2003). Through the phloem shoot sucrose is transported down to reach the roots, where the sucrose is rapidly hydrolysed to glucose and fructose (Hammond and White, 2008). In addition, root mycorrhizal symbiosis mainly utilizes glucose, which is transformed into trehalose and glycogen for both mycorrhizal development and sink storage. Better root mycorrhizal colonization in the Put-treated seedlings suggests that the mycorrhizas might consume more glucose and thus form a mycorrhizal carbon sink. In such processes, mycorrhizal roots may require an increased sucrose via the phloem transport to the root. As a result, exogenous Put would interact with arbuscular mycorrhizas to alter carbohydrate transport and decomposition. Further experiments on carbon consumption are required to confirm this hypothesis.

Conclusions

The present study showed that exogenous Put application at the range of 0.05-1 mM could obviously increase the infection of roots at all levels by G. mosseae. In addition, exogenous Put has the enhanced effects on plant growth, RSA, and contents of chlorophyll a, total chlorophyll, and carotenoid in the mycorrhizal seedlings. Exogenous Put may thus interact with AMF, thereby increasing glucose contents but decreasing sucrose contents in leaves and roots. A 0.05 mM Put concentration showed the best effects on regulating mycorrhizal colonization and growth of mycorrhizal plants.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (30800747).

References

Sharma P, Yadav JS, Rajam MV (1997). Induction of laterals in root cultures of eggplant (Solanum melongena L.) in

