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Abstract

Adventitious rooting is a complex process and a key step in the vegetative propagation of economically important woody, horticultural 
and agricultural species, playing an important role in the successful production of elite clones. The formation of adventitious roots is a 
quantitative genetic trait regulated by both environmental and endogenous factors. Among phytohormones, auxin plays an essential 
role in regulating roots development and it has been shown to be intimately involved in the process of adventitious rooting. Great 
progress has been made in elucidating the auxin-induced genes and auxin signaling pathway, especially in auxin response Aux/IAA 
and Auxin Response Factor gene families. Although some important aspects of adventitious and lateral rooting signaling have been 
revealed, the intricate signaling network remains poorly understood. This review summarizes some of the current knowledge on the 
physiological aspects of adventitious root formation and highlights the recent progress made in the identification of putative molecular 
players involved in the control of adventitious rooting. Despite much has been discovered regarding the effects and regulation of auxins 
on plant growth since the Darwin experiments, there is much that remains unknown.
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Introduction to adventitious roots

Vegetative propagation is extensively used in agricul-
ture, horticulture and forestry for multiplying elite plants 
selected from natural populations or obtained in breed-
ing programs (Hartmann et al., 1990). The formation of 
adventitious roots is an essential step in vegetative propa-
gation and therefore if cuttings do not form roots, losses 
occur (de Klerk et al., 1999). Researchers developed new 
rooting treatments, examining the effects of plant growth 
regulators (Haissig and Davis, 1994) by a short exposure to 
a solution with a high auxin concentration or by dipping 
in rooting powder (auxin with talc). Noticeable progress 
has been made recently in the research on rooting, which 
is not a single process but a progressive process consisting 
of different steps, each with its own requirements (Kevers 
et al., 1997). 

Plant development is modulated by genetic and envi-
ronmental factors, which have effects on auxin biosynthe-
sis, metabolism, transport, and signaling pathway (Han 
et al., 2009). Recent advances in studying mutations of 
Arabidopsis and rice increased the understanding of the 
role of auxin in the regulation of rooting mechanisms and 
molecular studies are essential to reveal the basic mecha-
nisms operating in adventitious root formation (de Klerk 
et al., 1999). Many dicots like Arabidopsis thaliana have a 
primary root that branches to generate several orders of 
lateral roots, while the root systems of crops like rice and 

maize are predominantly composed of adventitious roots 
(Hochholdinger et al., 2004; Osmont et al., 2007).

Definition. Adventitious roots can arise naturally from 
stem tissue under stressful environmental conditions; they 
may also be induced by mechanical damage or following 
tissue culture regeneration of shoots (Li et al., 2009). They 
are postembryonic roots which arise from the stem and 
leaves and from nonpericycle tissues in old roots (Geiss et 
al., 2009). There are at least two pathways by which ad-
ventitious roots form: by direct organogenesis from estab-
lished cell types such as the cambium or from callus tissue 
following mechanical damage (e.g. cuttings).

Induction phases. Rooting phases, which can be dis-
tinguished in various ways, have different hormone re-
quirements (de Klerk et al., 1999). De Klerk et al. (1997) 
showed that apple microcuttings are not very sensitive to 
auxin and cytokinin during the first 24 h. Dedifferentia-
tion occurs during this lag period and cells can respond to 
auxin. The root primordia originates from the cells between 
the vascular bundles which accumulate starch during the 
initial 24 h. Between 72-96 h, activated cells become com-
mitted to the formation of root primordia by the rhizo-
genic action of auxin in the induction phase, when auxin 
pulses induce the highest number of roots. On the histo-
logical level the starch grains present at 24 h are degraded 
during the next 24 h, the first cell divisions occurring on 
the first 48 h and by 96 h meristemoids are present. Auxin 
is not required after 96 h and the concentrations favorable 
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the active growth substance from oat coleoptile tips can 
diffuse into a block of agar and maintain its stimulative ef-
fect of the growth of coleoptiles. He developed a bioassay 
called Avena test to identify and quantify the biological 
activity of this growth substances he called AUXIN (from 
Greek auxein, to increase, to grow) (Went, 1935). In the 
30s, Kögl et al. (1933) isolated from human urine various 
substances including IAA (indole-3-acetic acid). After 
few mistakes, the IAA was finally identified as the mol-
ecule that stimulates coleoptile growth ( Jacobs, 1979) and 
some years later was isolated from plants. Auxin has been 
described by Van der Lek (1941) and Haissig and Davis 
(1994). Practical application of auxin for rooting became 
possible when it was descovered that it also acts when 
added on the cut surface of cuttings (Hitchcock and Zim-
merman, 1936). After the discovery of IAA, IBA (indolic-
3-butyric acid) and NAA (1-naphthalene acetic acid) were 
synthesized chemically, their capability to induce roots 
was discovered by Zimmerman and Wilcoxon, 1935, and 
talc powder was introduced as a carrier for auxin (Grace, 
1937).

IBA is used for rooting in commercial operations, fol-
lowed by IAA and NAA and chemical analogues synthe-
sized and examined for auxin-like activity. Auxin enters 
cuttings mostly via the cut surface (Kenney et al., 1969), 
even in microcuttings that are known to have a poorly 
functioning epidermis (Guan and De Klerk, 2000) and 
is rapidly taken up in cells by pH trapping (Rubery and 
Sheldrake, 1973) and by influx carriers (Delbarre et al., 
1996). Auxin metabolism studies on adventitious root-
ing have been done on cuttings exposed for a prolonged 
period to auxin, but in other studies cuttings have been 
exposed to auxin for short periods (Diaz-Sala et al., 1996; 
Liu and Reid, 1992) An optimal auxin concentration for 
one of the three phases may be supraoptimal or subopti-
mal for the next. It was observed that apple microcuttings 
cultured continuously on medium with auxin (IAA, IBA 
or NAA) show the best rooting performance (a large num-
ber of roots is formed over a broad range of auxin concen-
trations) when cultured with IAA (de Klerk et al., 1997). 
Although roots may be induced by auxin, wounding is 
usually required to achieve rooting and it was suggested 
that WRCs (wounding-related compounds) play a main 
role in the dedifferentiation phase (de Klerk et al., 1999).

Auxin effect on adventitious rooting

Auxin and ethylene are often described as activators, 
while cytokinins and gibberellins are seen as inhibitors 
of adventitious root formation, even when some positive 
effects have been observed. The widely used sources of 
growth hormones for cuttings rooting are the IBA, NAA, 
IAA and commercialization root promoters (root-growing 
powders). The successful formation of adventitious roots 
is an obligatory phase of vegetative propagation in many 
woody plants; this being related to the presence of auxin 

for the meristemoids formation become inhibitory during 
this phase. The meristemoids develop into root primordia 
and further into roots during the differentiation phase (de 
Klerk et al., 1999).

The plant hormone auxin

Auxins, cytokinins, gibberellins, abscisic acid and ethyl-
ene are the five classical groups of plant hormones (Kende 
and Zeevaart, 1997). Ideas about hormone function have 
evolved from numerous experiments in which the applica-
tion of the hormones have shown to affect cell division in 
the vascular cambium, cell expansion and control of dif-
ferentiation into different types of cambial derivates (Mel-
lerowicz et al., 2001).

The formation of adventitious roots is a process induced 
and regulated by environmental and endogenous factors, 
such as temperature, light, hormones (especially auxin), 
sugars, mineral salts and other molecules. Phytohormones 
have direct (involved in cell division or cell growth) or in-
direct (interacting with other hormones or molecules) ef-
fects on plants. Over the last years, a multitude of models 
have been proposed to show how plant hormones interact 
to control plant development ( Jaillais and Chory, 2010; 
Nemhauser et al., 2006; Santner and Estelle, 2009).

Auxins are a group of tryptophan-derived signals, 
which are involved in most aspects of plant development 
(Woodward and Bartel, 2005). Auxin plays a major role 
in controlling growth and development of plants, early 
stages of embryogenesis, organization of apical meristem 
(phyllotaxy) and branching of the plant aerial parts (apical 
dominance), formation of main root, lateral and adventi-
tious root initiation (Went and Thimann, 1937). Auxin is 
also involved in gravitropism and phototropism (Kepinski 
and Leyser, 2005). These multiple effects across the plant 
result from its control of cell division, cell elongation and 
certain stages of differentiation (Davies, 2004). Auxin is 
synthesized mainly in young leaves and is actively trans-
ported to other tissues to coordinate growth and facilitate 
responses to environmental variations.

Discovery and history. The first observations suggest-
ing the presence of a chemical substance modifying plant 
growth in response to unilateral illumination date from 
1880, when Darwin published “The power of movement 
in plants”. Tips of plants exposed to light curved toward 
the light, which led Darwin to believe that a chemical mes-
senger transports a signal from the coleoptile to the rest of 
the plant (Darwin, 1880). In 1913, Peter Boysen-Jensen 
removed the coleoptiles and plants growth stopped and 
then he replaced the coleoptile with a piece of agar and 
placed the coleoptile on top of the agar block. He proved 
that a signal must be transported from the coleoptile to 
the rest of the plant, as Darwin had originally deduced 
(Moore et al., 1995). In 1918, Arpad Paal accumulated 
the first evidence showing that growth signal is chemical 
in nature (Moore et al., 1995). In 1926, Went showed that 
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(Kim et al., 1998; McClelland et al., 1990). IAA was the 
first used to stimulate rooting of cuttings (Cooper, 1935) 
and soon after another auxin which also promoted rooting, 
IBA, was discovered and was considered even more effec-
tive (Zimmerman and Wilcoxon, 1935). Nowadays IBA is 
used commercially to root microcuttings and is more ef-
ficient than IAA (Epstein and Ludwig-Müller, 1993).

Auxin is one of the major endogenous hormones 
known to be intimately involved in the process of adventi-
tious rooting (Wiesman et al., 1988) and the physiological 
stages of rooting are correlated with changes in endoge-
nous auxin concentrations (Heloir et al., 1996). High en-
dogenous auxin concentration is normally associated with 
a high rooting rate at the beginning of the rooting process 
(Blažková et al., 1997; Caboni et al., 1997). Auxins have 
been shown to be effective inducers of adventitious roots 
in many woody species (de Klerk et al., 1999; Diaz-Sala 
et al., 1996; Goldfarb et al., 1998; Selby et al., 1992) and  
are usually synthesized in the stem tip and tender leaves of 
aerial parts of plants and then transportted to the action 
site (Ljung et al., 2001). When applying exogenous auxin 
on cuttings, the endogenous auxin concentration reaches 
a peak after wounding (Gaspar et al., 1996; Gatineau et al., 
1997) coinciding with the initiation of the rooting pro-
cess. The importance of the auxin during the expression 
phase was demonstrated in Populus sp. (Bellamine et al., 
1998). Rice mutants affected in the expression of PIN-
FORMEDl (OsPIN1) gene, potentially involved in auxin 
polar transport, are affected in adventitious root emer-
gence and tillering confirming that the auxin concentra-
tion and distribution in the different tissues is important 
(Xu et al., 2005).

The pattern of auxin action, despite its crucial role in 
adventitious root development, is still poorly understood. 
In Arabidopsis, the superroot (sur1 and sur2) mutants ac-
cumulate IAA and develop numerous adventitious roots 
on the hypocotyl and cuttings of different organs in the 
case of sur1 (Boerjan et al., 1995; Delarue et al., 1998). Re-
cently, differential roles for IAA and IBA have been found 
in the regulation of adventitious root formation from stem 
segments of Arabidopsis (Ludwig-Muller et al., 2005). 

Several gain-of-function iaa mutations affect produc-
tion of lateral or adventitious roots (Fukaki et al., 2002; 
Rogg et al., 2001; Tatematsu et al., 2004). TIBA, an auxin 
polar transport inhibitor, applied to the top of the hypo-
cotyls lowered the rate of root formation (Fabijan et al., 
1981). It was suggested that endogenous IAA and exog-
enous IBA might interact to promote adventitious rooting 
in Arabidopsis stem segments. The performance of IBA 
versus IAA can be explained by several possibilities: higher 
stability, differences in metabolism, differences in transport 
and IBA as a slow release source of IAA. The conversion of 
IBA to IAA occurs in many plant species (Ludwig-Muller 
et al., 2005). However, in microcuttings of Malus sp., IBA 
induced more roots than IAA although it was converted 
to IAA only at very low levels, suggesting that either IBA 

itself was active or that it modulated the activity of IAA 
(Van Der Kriken et al., 1992). Although many researchers 
thought growth hormone treatment would promote root-
ing of cuttings, improve rooting number and lower the 
rate of partial rooting, the rooting ratio decreased while 
the hormone concentration increased. High hormone 
concentrations have side effects on the root development 
(Edson et al., 1991; Mason, 1989). Auxin can increase the 
rate of ethylene biosynthesis (Riov and Yang, 1989) and 
stimulate the production of ethylene correlating with the 
fact that the ACC synthase4 gene has been found to be an 
early auxin-induced gene (Abel et al., 1995). Auxin and 
ethylene relationship in root development has been shown 
by a number of isolated mutants that have resistance to 
both hormones. The potential auxin efflux component, 
AtPIN2, allelic to the ethylene-insensitive root1 (EIR1) is 
an example (Muller et al., 1998). Analogously, axr2 is a 
dominant mutant that gives resistance to both ethylene 
and auxin (Wilson et al., 1990). IAA induced ethylene 
production may be a factor involved in the stimulation of 
adventitious rooting (Pan et al., 2002).

Studies have emphasized that polyamines play a role in 
adventitious rooting (Biondi et al., 1990; Hausman et al., 
1994; Heloir et al., 1996) and a possible interrelationship 
between polyamines and auxin controlling rooting induc-
tion was suggested (Hausman et al., 1995). 

Genes asociated with the adventitious root formation 

Some mutants affected in hormone homeostasis or 
signaling are also affected in adventitious root formation. 
The ABA-deficient tomato mutants flacca and notabilis 
produce an excess of adventitious roots on the stems (Tal, 
1966). Recently, it has been shown using notabilis mutant 
that adventitious root phenotype can be restored to wild 
type by expressing the LeNCED1 gene involved in ABA 
biosynthesis, suggesting that ABA can be a negative regula-
tor of adventitious roots (Thompson et al., 2004). Mutants 
overproducing auxin in Arabidopsis, like sur1 and sur2 
(Boerjan et al., 1995; Delarue et al., 1998) or yucca (Zhao 
et al., 2001) produce adventitious roots on hypocotyls 
of light grown seedlings. SUR1 and SUR2 genes encode 
a C-S-lyase protein and the cytochrome P450 Cyp83B1, 
both involved in the indole glucosinolate pathway (Bak 
et al., 2001; Barlier et al., 2000; Mikkelsen et al., 2004). 
YUCCA1 gene encodes a flavin monooxygenase suitable 
for converting tryptamine in N-hydroxyl tryptamine in 
vitro (Zhao et al., 2001, 2002) and belongs to a family of 
YUCflavin mono-oxigenases from which 4 have a role in 
auxin biosynthesis (Cheng et al., 2006).

Temperature-sensitive Arabidopsis mutants (rrd1, rrd2 
and rrd4) affected in root redifferentiation were identified 
(Sugiyama, 2003) and it was suggested that RRD1 and 
RRD2 genes have a role in fundamental processes for active 
cell proliferation. RRD4 is involved in the acquisition step 
of cell proliferation during callus initiation in hypocotyl 
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explants. Other temperature-sensitive mutants defective 
in various stages of adventitious root formation were iso-
lated (Konishi and Sugiyama, 2003). The root growth de-
fective mutants rgd1, rgd2 and rgd3 became defective after 
the establishment of the root apical meristem. The ROOT 
INITIATION DEFECTIVE S (RIDS) gene was identi-
fied as the MOR1 / GEM gene encoding a microtubule-
associated protein (Konishi and Sugiyama, 2006). The rid 
2-1 mutant is recessive temperature-sensitive mutant of 
Arabidopsis that was isolated by screening using adventi-
tious root formation as an index phenotype. RID2 gene 
encodes an evolutionarily conserved methyltransferase-
like protein, which was localized in the nucleus, contrib-
uting to the nucleolar activity for pre-rRNA processing 
(Ohbayashi et al., 2011).

The auxin insensitive rice mutant crl1/arl1 (crown root-
less1/adventitious rootless1) defective in adventitious roots 
formation was identified (Inukai et al., 2005; Liu et al., 
2005). CRL1/ARL1, an auxin-responsive gene, encodes 
a nuclear protein containing ASYMMETRIC LEAVES2 
(AS2)/LATERAL ORGAN BOUNDARIES (LOB) do-
main (Inukai et al., 2005; Liu et al., 2005). CRL1/ARL1 
can be considered as a positive regulator for crown root for-
mation in rice. Phylogenetic reconstructions revealed that 
the allelic rice genes CRL1 and ARL1 (Liu et al., 2005), 
the maize gene RTCS (Taramino et al., 2007) and the Ara-
bidopsis genes LBD16 and LBD29 (Shuai et al., 2002) are 
closely related. The genes have been involved in different 
aspects of root formation, CRL1/ARL1 and RTCS genes 
are localized in synthenic regions of the genomes and their 
loss of function results in similar phenotypes indicating 
orthologous functions during shoot-borne root forma-
tion (Hochholdinger and Zimmermann, 2008; Inukai et 
al., 2005). In Arabidopsis LBD16 and LBD29 genes are 
involved in lateral root formation (Okushima et al., 2007) 
and are activated by ARF7 and ARF19 which indicates 
that these LOB domain genes are early auxin responsive 
genes. Therefore, these closely related monocot and dicot 
LOB domain proteins all probably act early in auxin sig-
naling in the root, yet in different developmental contexts: 
The rice gene is involved in shoot-borne and lateral root 
formation, the maize gene in shoot-borne root formation 
and the Arabidopsis genes in lateral root initiation (Hoch-
holdinger and Zimmermann, 2008). 

Researchers have identified several genes that regulate 
indeterminate root growth in Arabidopsis. SHORT-ROOT 
(SHR) is a regulator of radial patterning and indetermi-
nacy of Arabidopsis thaliana primary root. SHR mutant 
fails to initiate cell division following germination. SHR 
is also required for the initiation and patterning of lateral 
root primordia, to maintain the indeterminate growth of 
lateral and anchor roots, regulating root-related develop-
mental processes (Lucas et al., 2011). 

Another related protein, SCARECROW (SCR), has 
a similar role alongside SHR (Benfey et al., 1993; DiLau-
renzio et al., 1996). SHR and SCR genes encode closely 

related transcription factors belonging to the GRAS gene 
family (DiLaurenzio et al., 1996; Helariutta et al., 2000). 
SHR has been demonstrated to directly regulate the ex-
pression of genes including SCR (Levesque et al., 2006) 
and a number of cell cycle components including the D-
type cyclin, CYCD6; 1 (Sozzani et al., 2010). 

Genes related to the induction of adventitious root-
ing in forest species have been described (Goldfarb et al., 
2003; Lindroth et al., 2001a, 2001b; Sanchez et al., 2007). 
Recently, two genes in pine were characterized, a P. ra-
diata SCARECROW-LIKE1 gene (PrSCL1)(Sanchez et 
al., 2007) and P. radiata SHORT-ROOT (PrSHR)(Sole et 
al., 2008), both genes may play a role during the earliest 
stages of adventitious root formation. The expression of 
PrSHR gene during adventitious rooting is also affected 
by the presence of MDPUs (methylenedioxyphenyl urea) 
which could interact, directly or indirectly, with the auxin-
signalling pathways in rooting-competent cuttings during 
adventitious rooting (Ricci et al., 2008). SCARECROW 
(SCR) is a putative transcription factor, expressed in cor-
tical and endodermal initials, and it is required for the 
asymmetric cell division that gives rise to cortex and endo-
dermis and to other tissues in aerial organs of Arabidopsis 
thaliana (DiLaurenzio et al., 1996; Heidstra et al., 2004; 
Wysocka-Diller et al., 2000). Arabidospis SCR (AtSCR) 
is also involved in the establishment of quiescent center 
identity and in the maintenance of the stem cell status of 
the surrounding initial cells during embryonic pattern for-
mation and postembryonal development (Sabatini et al., 
2003), and its expression is associated with auxin distribu-
tion in the root apical meristem (DiLaurenzio et al., 1996; 
Sabatini et al., 1999).

VvPRP1 and VvPRP2, induced in stem cuttings of Vi-
tis vinifera L. during rooting, encode proline-rich proteins. 
Induction of these genes is not enhanced by IAA treatment 
and the expression of the VvPRP1 is wound-inducible. The 
results suggest that the genes have an important role in the 
initiation of new roots by altering the cell wall mechanical 
properties to enable root emergence increasing the plastic-
ity of the cell wall (Thomas et al., 2003).

The gene expression pattern during adventitious root 
development of Pinus contorta was investigated. During 
the root initiation phase, genes involved in cell replica-
tion and cell wall weakening and a transcript encoding 
a PINHEAD/ZWILLE-like protein were upregulated, 
while genes related to auxin transport, photosynthesis and 
cell wall synthesis were downregulated. During the root 
elongation phase downregulation of transcripts encoding 
proteins involved in cell replication and stress occurred 
(Brinker et al., 2004). Transgenic lines expressing an ac-
tive form of the Populus type-B cytokinin response regu-
lator PtRR13 (ΔDDKPtRR13) have a delayed rooting 
phenotype and cause misregulation of CONTINUOUS 
VASCULAR RING1, a negative regulator of vasculariza-
tion. Inappropriate cytokinin action via ΔDDKPtRR13 
expression appeared to disrupt adventitious root develop-
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ment 24 h after shoot excision, when root founder cells 
are hypothesized to be sensitive to the negative effects of 
cytokinin (Ramirez-Carvajal et al., 2009).

An Arabidopsis transgenic line overexpressing ARF17 
developed fewer adventitious roots than wild-type plants, 
confirming the potential role of ARF genes in the regula-
tion of adventitious root development by auxin (Sorin et 
al., 2005). It was shown that ARF17, a target of miR160, 
is a negative regulator, and ARF6 and ARF8, targets of 
miR167, are positive regulators of adventitious rooting. 
These results provide evidence of microRNA control of 
phenotypic variability and are an important step in under-
standing the molecular mechanisms regulating adventi-
tious rooting (Gutierrez et al., 2009). The proteomic anal-
ysis of ago1-3, sur1-3, sur2-1 and the sur2-1 ago1-3 double 
mutant led to the identification of 11 proteins, including 
three auxin-inducible GH3-like proteins, whose expres-
sion was altered by mutations, particularly in adventitious 
rooting formation. The results strongly suggest that those 
proteins will be valuable markers for quantitative genetic 
analysis of adventitious root development (Sorin et al., 
2006). 

MsAPK1, member of the plant kinases family con-
taining the Ankyrin-Protein Kinases (APKs), is induced 
by osmotic stress in roots of Medicago sativa and is related 
to two APK genes in Arabidopsis thaliana, AtAPK1 and 
AtAPK2. Promoter-GUS fusions assays revealed that Ara-
bidopsis APK genes show distinct expression patterns in 
roots and hypocotyls. The DN mutant lines showed in-
creased capacity to develop adventitious roots when com-
pared with control or MsAPK1-expressing plants (Del-
phine et al., 2008).

In a study made on tomato mutants, the epi (epinastic) 
mutation increased adventitious root formation and the 
Nr (Never ripe) mutation reduced the number of adven-
titious roots (Negi et al., 2010). This indicates a negative 
role for ethylene in lateral root formation of tomatoes and 
a positive role in adventitious root formation with modu-
lation of auxin transport as a central point of ethylene-aux-
in crosstalk (Negi et al., 2010). The treatment of tomatoes 
with AVG (aminoethoxyvinyglycine) and NPA (1-N-
Naphthylphthalamic acid) resulted in a reduction of ad-
ventitious roots in waterlogged plants. Ethylene, perceived 
by the Nr receptor, stimulated auxin transport. Auxin 
accumulation in the base of the plant induces growth of 
adventitious roots, forming a new root system capable of 
replacing the one damaged by submergence (Vidoz et al., 
2010).

Auxin efflux carrier, PIN1, is a highly conserved gene 
family, which may play a key role in polar auxin transport 
(Friml and Palme, 2002).The finding that OsPIN1 is in-
volved in auxin-dependent adventitious root emergence 
and tillering provides a new insight into the function of 
the PIN1 family in rice (Xu et al., 2005). The rice gene 
OsCAND1, the homolog of Arabidopsis CAND1, is in-
volved in auxin signaling to maintain the G2/M cell cycle 

transition in crown root meristem and the emergence of 
crown root, providing new information about the molecu-
lar regulation of the emergence of crown root (Wang et al., 
2011).

ARF and AUX/IAA involved in adventitious rooting

Great progress has been made in recent years in un-
derstanding the auxin response genes and auxin signaling 
(Parry and Estelle, 2006; Quint et al., 2009). The response 
to auxin includes a rapid initial cell growth response that 
may involve auxin-induced changes in pH, calcium and 
gene expression. Auxin response is regulated by AUX/
IAA proteins and the ARF (Auxin Response Factor) pro-
teins (Overvoorde et al., 2005). The AUX/IAA genes are 
induced in response to auxin, encoding small nuclear pro-
teins that share four domains (I, II, III and IV) and func-
tion as transcription factors that regulate downstream 
auxin responses (Guilfoyle and Hagen, 2007; Reed, 
2001). AUX/IAA genes were identified in screens for 
mRNA transcripts induced rapidly by auxin. AUX/IAA 
proteins likely function as homodimers and/or heterodi-
mers and have been found to interact in homotypic and 
heterotypic associations in yeast two-hybrid experiments, 
and these interactions were dependent on the presence of 
domains III and IV (Kim et al., 1997; Rouse et al., 1998). 
Arabidopsis has 29 AUX/IAA proteins which have four 
conserved domains called I–IV. Domain I is a transcrip-
tional repression domain and can repress auxin gene in-
duction responses (Kim et al., 1997; Tiwari et al., 2003). 
Domanin II is recognized by SCFTIR1 and probably other 
closely related E3 ubiquitin ligases (Kepinski and Leyser, 
2005). Domains III and IV constitute a dimerization do-
main and can interact with similar motifs in ARF proteins 
(Ulmasov et al., 1999). Gain-of-function mutations in 
motif II of several IAA genes stabilize the corresponding 
protein and affect developmental responses to auxin. In 
several cases these mutations decrease auxin-induced gene 
expression (Tatematsu et al., 2004). AUX/IAA proteins 
have short half-lives, suggesting a primary role for protein 
degradation in the regulation of their activity. Guilfoyle et 
al. (1998) assumed that domain II was responsible for the 
rapid turnover of these proteins, because mutations in this 
domain (like axr3 mutants) led to a semidominant gain-
of-function phenotype (Guilfoyle et al., 1998). Worley et 
al. (2000) suggested that rapid degradation of AUX/IAA 
proteins is essential for a normal auxin response. It was also 
found that overexpression of the IAA17 protein in Ara-
bidopsis resulted in plants with an axr3-like phenotype 
(Worley et al., 2000). AUX/IAA proteins do not appear to 
bind DNA themselves but can affect the transcription of 
ARF-regulated genes by dimerising with ARFs (Guilfoyle 
and Hagen, 2007; Tiwari et al., 2003). 

Auxin response factors (ARF) are transcription fac-
tors that regulate the expression of auxin response genes 
(Guilfoyle and Hagen, 2007; Tiwari et al., 2003). Arabi-
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from data mining. Unfortunately, the adventitious root 
response genes are still not entirely identified, therefore 
this process represents an area open for research.
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