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Abstract

Lipoxygenase catalyzes oxygenation of long chain fatty acids to hydroperoxides and is involved in the degradation of membranes 
occuring in some types of programmed cell death (PCD). The localization of lipoxygenase in the anther wall layers of L. undulatus 
during cellular degradation was analyzed by immunogold labeling technique at young and vacuolated pollen stage, due to the close 
relation between lipoxygenase activity and membrane degradation in programmed cell death. Immunoreaction to lipoxygenase was 
monitored slightly at young pollen stage in the anther wall cells. As programmed cell death signals progress, lipoxygenase revealed in 
anther wall cells intensely. At vacuolated pollen stage tapetal cells came forward with ultrastructural changes such as cell, organelle and 
membrane disintegration. At the indicated stage immunogold particles indicating sites of LOX PAb-binding epitopes were located in 
the nucleus (chromatin was condensed and lined at the periphery), cytoplasm and close to long dilated rough endoplasmic reticulum 
(RER) cisterna. In conclusion lipoxygenase increase which has a role in the membrane degeneration, possibly induced the collapse of 
tonoplast, nuclear and plasma membrane and triggered programmed cell death in the tapetal cells of L. undulatus as well as the other 
wall cells. 

Keywords: anther, Lathyrus undulatus, lipoxygenase, Programmed Cell Death, tapetum

Introduction

Programmed cell death (PCD) is a ubiquitous active 
process that occurs in the course of development and in re-
sponse to biotic and abiotic stresses. PCD has been repre-
sented in animal cells in great detail at the morphological, 
biochemical and molecular levels (Hale et al., 1996; Fadok 
et al., 1998). It has been reported that reactive oxygene 
species, H2O2 and lipid peroxides have been long consid-
ered crucial elements of apoptosis in animals (Hockenbery 
et al., 1993; Torres-Roca et al., 1995). More recently the 
peroxides produced by lipoxygenase (LOX) activity have 
received attention as mediators of apoptosis (Wagen-
knecht et al., 1997; Maccarrone et al., 1999). Remarkably, 
lipoxygenase-dependent pathways are implicated also in 
plant response to abiotic stress (Conconi et al., 1996) and 
development of hypersensitive response (Rusterucci et al., 
1999).  Moreover it has been reported that LOX is sup-
posed to mediate the formation of superoxide anion in 
senescent plants (Lynch and Thompson, 1984).

LOXs (EC 1.13.11.12) are nonheme iron-containing 
dioxygenases widely distributed in plants and animals 
(Porta and Rocha-Sosa, 2002). LOX catalyzes oxygen-
ation of long chain fatty acids to hydroperoxides and is in-
volved in the degradation of membranes occuring in some 
types of PCD (Szczuka et al., 2006). It has been known 
that LOX which generates the peroxides are potentially 

toxic for cell membrane and therefore would not be ex-
pected to accumulate in plant tissues. These peroxides are 
quickly metabolized in chemical compounds involved in 
signaling, plant defense and PCD (Siedow, 1991; Gigot 
et al., 2010). 

Although LOX is involved in a number of important 
processes in plant cells, its physiological function is still 
not fully understood. It has been reported that, high activ-
ity of LOX is also related to early development stages of 
plant growth (Schmitt and van Mechelen, 1997). Nowa-
days, LOX have been found in a lot of varieties of plants 
and organs, such as brassica flowers (Galliard and Chan, 
1980), soybean seeds (Axerold et al., 1981), bean seedlings 
and cotyledons (Porta et al., 1999), olive fruit (Lorenzi et 
al., 2006), Gagea anthers (Szczuka et al., 2006) and dry 
fruits (walnuts, almonds, etc.) (Buranasompob et al., 
2007). Kato et al. (1992) indicated that LOX is distribut-
ed in plant organs according to the type of environmental 
conditions, and the age of the plant. 

In the previous studies, a detailed analysis of the de-
velopment and PCD events in the anther wall cells of 
Lathyrus undulatus Boiss. was undertaken (Fabaceae) by 
light, fluorescence and electron microscopy (Vardar, 2008; 
Vardar and Ünal, 2011). The present paper provides to 
reveal the localization and possible role of LOX during 
PCD of Lathyrus undulatus Boiss. anther wall cells by im-
munogold labeling technique. 
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tivity and membrane degradation in PCD. Immunogold 
labeling revealed the subcellular localization of epitopes 
binding lipoxygenase primary antibody (LOX PAb) in the 
anther wall cells.

As it was previously described, the anther wall is con-
sisted of epidermis, endothecium, middle layer and tape-
tum in Lathyrus undutus (Vardar and Ünal, 2011). The 
single-layered epidermis remained intact up to anthesis. 
Endothecial cells acquired thickenings beginning from 
the vacuolated pollen stage. Middle layer was ephemeral 
and crushed at young pollen stage. The secretory tapetum 
underwent substantial changes in cell organization in-
cluding nucleus morphology typical for PCD at the end 
of the young pollen stage. As PCD progresses along with 
the central vacuole collapse the tapetal cells reduced and 
underwent progressive disintegration and degeneration 
at vacuolated pollen stage. At bicellular stage tapetal cells 
degraded entirely, epidermis and single row U-shaped en-
dothecium existed in mature anther wall (Vardar, 2008; 
Vardar and Ünal, 2011).

Immunoreaction to LOX was slightly monitored 
in the peripheral cytoplasm of flattened epidermal cells 
and endothecium at young pollen stage (Fig. 1). At this 
stage central vacuole was progressive and the cytoplasm 
locates at the cell periphery. In the course of vacuolated 
microspore stage, cells underwent structural disintegra-
tion and organelles showed conspicuous changes. Besides 
a positive immunoreaction to LOX was monitored in the 
central vacuole, cytoplasm (near the degenerated organ-
elles) and near the cell wall in the epidermal cells (Fig. 2). 
At the indicated stage, immunolabelling to LOX in the 
endothecial cells was more intense than in the epidermal 
cells. Immunogold particles were observed intensively in 

Material and methods

Immunogold labelling was applied according to Szc-
zuka et al. (2006). Flower buds were fixed in 2% para-
formaldehyde and 1% glutaraldehyde dissolved in 0.05 
M cacodylate buffer, pH 7.4 for 24 h at 4°C. The samples 
were rinsed several times in the buffer and embedded in 
Epoxy resin. Ultrathin sections (~70 nm) were collected 
on nickel grids, and incubated first in 1% bovine serine 
albumin (BSA) in cacodylate buffer for 30 min at room 
temperature (RT), then with pre-immune rabbit serum 
(Agrisera, Sweden) diluted 1/1000 in buffer-BSA for 1 h 
at RT. After three times washing with buffer-BSA (10 min 
each wash) the sections were incubated with buffer-BSA 
containing rabbit anti-LOX antiserum (Agrisera, Sweden) 
diluted 1/1000 for 1 h and repeatedly washed with buffer-
BSA. Goat antirabbit immunoglobulins conjugated to 10 
nm gold particles (GAR-gold) (Sigma) were diluted 1/50 
in buffer-BSA and then applied for 40 min at RT. The sec-
tions were washed several times with buffer and distilled 
water. For negative control, samples were incubated with 
pre-serum and GAR-gold or with GAR-gold only, omit-
ting the primary antiserum. The sections were stained with 
2% uranyl acetate for 5 min and lead citrate for 1 min. All 
sections were examined with a JEOL JEM 1011 electron 
microscope.

Results and discussion

The localization of LOX in the anther wall layers of 
L. undulatus during cellular degradation was analyzed by 
immunogold labeling technique at young and vacuolated 
pollen stage, due to the close relation between LOX ac-

Fig. 1. Immunoreaction to LOX (white arrow) in the epidermis and endothecium at young pollen 
stage. cw: cell wall, En: endothecium, Ep: Epidermis. Bar: 0.5 µm
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the cytoplasm of cells of this subepidermal layer. Particles 
spread mainly in the peripheral cytoplasm, around dilated 
rough endoplasmic reticulum (RER) elements. Close to 
the thicker radial cell walls scattered particles were appar-
ent (Fig. 2, 3).

Middle layer underwent disintegration and cell death 
at the beginning of young pollen stage (Vardar and Ünal, 
2011). At vacuolated pollen stage the flattened and 
crushed cells of the middle layer contained remnants of 
disintegrated cytoplasm. The positive immunoreaction to 

LOX was less intense than in the cells of both epidermis 
and endothecium. Immunogold particles were concen-
trated at the cytoplasm (Fig. 4, 5).

At the beginning of young pollen stage no degenera-
tion signals and immunogold particles were observed at 
the tapetal cells (Fig. 6). The substantial changes in the cell 
and rare immunogold particles were first monitored at the 
end of young pollen stage.

At the stage of vacuolated pollen, tapetal cells showed 
definite signs of degeneration characterized of PCD 

Fig. 2. Immunoreaction to LOX (black arrow heads) in the epidermis at vacuolated pollen stage. cw: 
cell wall, En: endothecium, Ep: Epidermis, v: vacuole. Bar: 0.5 µm

Fig. 3. Immunoreaction to LOX (arrow heads) in the endothecium at vacuolated pollen stage. cw: 
cell wall. Bar: 0.5 µm
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(Vardar and Ünal, 2011). All tapetal organelles showed 
conspicuous changes in the ultrastructure compared to 
the previous stages. Moreover plasma membrane was no 
longer recognizable, and central vacuole degenerated with 
the breakdown of the tonoplast (Vardar, 2008). At this 
stage immunogold particles indicating sites of LOX PAb-
binding epitopes were located in the nucleus (chromatin 

was condensed and lined at the periphery), cytoplasm and 
close to long dilated RER cisterna (Fig. 7-9). 

To determine the degree of specificity of the immuno-
gold reaction, a control reaction for the whole procedure 
was run. The control reaction omitted incubation with the 
primary antibody but not incubation with or without pre-
serum. The reactions showed no gold particles (Fig. 10). 

Fig. 4. Immunoreaction to LOX (arrow heads) in the middle layer at young pollen stage. En: en-
dothecium, Ml: middle layer, Ta: tapetum. Bar: 0.5 µm

Fig. 5. Immunoreaction to LOX (arrow heads) in the remnants of middle layer at vacuolated pollen 
stage. En: Endothecium, Ep: Epidermis, Ml: middle layer. Bar: 0.5 µm
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As it was previously described, the progressive diagnos-
tic features were observed in the anther wall cells of L. un-
dulatus at vacuolated pollen stage. It was well documented 
that tapetal cells of L. undulatus underwent substantial 
changes in cell organization including nuclear membrane 
degeneration, vacuole collapse according to tonoplast rup-
ture, shrinkage of the cytoplasm, the increase and enlarge-
ment of the endoplasmic reticulum cisternae and disrup-
tion of the plasma membrane (Vardar, 2008; Vardar and 
Ünal, 2011). The presented study indicated that LOX 

PAb-binding epitopes appeared intensely at vacuolated 
pollen stage in the anther wall cells.

Szczuka et al. (2006) confirmed the immunolocaliza-
tion of LOX in the anther wall cells  and pollen grains 
at the stage of pollen grain release to the anther loculus. 
However, the researchers focused on the localization of 
LOX and the relation between LOX and the lipidic struc-
tures such as sporopollenin and pollen coat. Likewise, sev-
eral reserachers revealed the localization of individual iso-
forms of LOX in different cellular compartments, such as 

Fig. 6. No immunoreaction to LOX in the tapetum at young pollen stage. cw: cell wall, Nu: Nucle-
us. Bar: 0.5 µm

Fig. 7. Immunoreaction to LOX (arrow heads) in the nucleus (condensed chromatin lining at the 
periphery) of tapetum at vacuolated pollen stage. ch: chromosome. Bar: 0.5 µm
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(Feussner et al., 1997). Alteration of membrane might 
be effective in the execution of the PCD, as described 
in animal apoptosis (Maccarrone et al., 1998). It seems 
noteworthy that the involvement of a LOX in membrane 
damage has been suggested during hypersensitive response 
of beans (Croft et al., 1990) and peppers (Bunaurio and 
Servili, 1999). 

cytosol (Siedow, 1991), chloroplast (Bowsher et al., 1992), 
microsomal membranes (Todd et al., 1990), plasmalemma 
(Vianello et al., 1995) and vacuoles (Wang et al., 1999). 

Maccarrone et al. (2000) have paid attention to LOX-
membrane lipid peroxidation-PCD relation in lentil root 
protoplasts induced by oxidative stress.  LOX has been de-
scribed to dioxygenate membrane lipid constituents and 
to generate conjugated hydroperoxides in the lipid bilayer 

Fig. 8. Immunoreaction to LOX (arrow heads) in the cytoplasm of tapetum at vacuolated pollen 
stage. Bar: 0.5 µm

Fig. 9. Immunoreaction to LOX (arrow heads) in the dilated RER of tapetum at vacuolated pollen 
stage. Bar: 0.5 µm
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Conclusions 

Overall the results reported in this paper demonstrate 
that LOX increase which took a role in the membrane 
degeneration, possibly induced the collapse of tonoplast, 
nuclear and plasma membrane and triggered PCD in the 
tapetal cells of L. undulatus as well as the other wall cells. 
The best of our knowledge is, this is the first report of local-
ization of LOX during developmental PCD in anthers. 
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