Serra da Canastra National Park: Influence of forest fires on the RUSLE C factor and its impact on water erosion

Guilherme S. RIOS¹, Derielsen B. SANTANA¹, Guilherme H.E. LENSE¹, Felipe G. RUBIRA², Joaquim E.B. AYER³, Ronaldo L. MINCATO²*

¹Federal University of Alfenas (UNIFAL-MG), Graduate Program in Environmental Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais, Brazil; guilherme.rios@unifal-mg.edu.br; derielsen.santana@unifal-mg.edu.br; guilherme.lense@unifal-mg.edu.br
²Federal University of Alfenas (UNIFAL-MG), Institute of Natural Sciences, R. Gabriel Monteiro da Silva, 700, Alfenas, Minas Gerais, Brazil; felipe.rubira@unifal-mg.edu.br; ronaldo.mincato@unifal-mg.edu.br (corresponding author)
³University Center of Paulínia (UNIFACP), Department of Chemistry, R. Madre Maria Vilas, 121, Paulínia, São Paulo, Brazil; joaquimeba@gmail.com

Abstract

The adverse impacts of soil degradation and nutrient loss resulting from water erosion are significant environmental concerns that have profound implications for both water quality and biodiversity. This study aims to evaluate the impact of forest fires on soil loss through water erosion in the Serra da Canastra National Park, in Minas Gerais state, Brazil. Using the Revised Universal Soil Loss Equation (RUSLE), which considers rainfall erosivity, soil erodibility, slope length and slope and vegetation cover, the C factor (vegetation cover) values were obtained from data from literature and methods based on the Normalized Differential Vegetation Index (NDVI). Validation was carried out using data on total sediment, water flow and daily runoff from the hydrosedimentological station and the InVEST software. The results highlight the significant impact of wildfires on soil loss through water erosion and indicate that areas recently affected by wildfires, especially on steep slopes and with more erodible soils, are subject to the highest rates of soil loss. Soil loss rates varied from 0.75 to 12.55 Mg ha⁻¹ yr⁻¹, in part due to the different ways of obtaining factor C. The research emphasizes the need to conserve vegetation cover to prevent soil erosion, particularly in regions impacted by forest fires. This study offers valuable insights that can contribute to enhancing the sustainable environmental management of the Serra da Canastra National Park.

Keywords: Cerrado; conservation units; MapBiomas; remote sensing; vegetation index

Introduction

The Cerrado covers 24% of Brazilian territory, ranking as the country’s second-largest biome, spanning 204 million ha (Sano et al., 2020). Despite being a global biodiversity conservation hotspot, it faces challenges from climate change and pressure from agricultural expansion, intensifying soil degradation, particularly...
through water erosion. One consequence is the loss of ecosystem services, even in protected areas like Conservation Units (UC) (Brasil, 2000; Klink and Machado, 2005; Silva et al., 2019).

Preserving the Cerrado safeguards ecosystems and contributes to environmental health. In this context, the Serra da Canastra National Park, established in 1972, is a full protection conservation unit (Unidade de Conservação de Proteção Integral) located in the Cerrado of Minas Gerais. The park is partially drained by the watersheds of the Paranaíba, the Rio Grande, and the São Francisco rivers (Brasil, 1972; 2000). The Serra da Canastra National Park faces environmental challenges arising from land use changes, including high rates of water erosion and recurrent forest fires. However, the park’s challenging geographical conditions, such as high altitudes and slopes, hinder the prevention and combat of forest fires (Messias and Ferreira, 2017; 2019a).

Human activities accentuate soil degradation and contribute to water erosion (Bertol et al., 2019). Erosion, in this context, is directly linked to forest fires that remove vegetation cover, intensifying raindrop impact, accelerating runoff, and reducing water infiltration (Messias and Ferreira, 2017; 2019a; Hysa et al., 2021; Rodrigues and Costa, 2021). Forest fires increase soil losses up, amplifying greenhouse gas emissions (Shakesby, 2011; Lal, 2020; Valkanou et al., 2022).

In this scenario, the intensification of land use changes leads to significant socioeconomic impacts, including a decrease in agricultural production (Dechen et al., 2015; Polidoro et al., 2021). Additionally, water erosion affects water bodies through sedimentation, pollution, and eutrophication (Bertol et al., 2019). Modeling soil water erosion in Geographic Information Systems (GIS) allows estimating soil loss rates (Costea et al., 2022). The Revised Universal Soil Loss Equation (RUSLE), proposed by Renard et al. (1997), is widely employed for estimating soil loss rates in large areas and watersheds. The equation considers five factors: rainfall erosivity (R); soil erodibility (K); topography (LS); land cover and management (C) and conservation practices (P). Several studies have been conducted to assess the performance of water erosion prediction models in Brazilian soils (Batista et al., 2017; Nachtigall et al., 2020; Lense et al., 2021; Macêdo et al., 2021; Santana et al., 2021). In RUSLE, the C factor reflects the influences of soil management, vegetation cover, and residual biomass on water erosion, playing an essential role in soil loss estimates (Renard et al., 1997; Bertol et al., 2019; Lanorte et al., 2019).

Experimental plot studies link land use and land cover (LULC) changes to water erosion, highlighting anthropogenic influences and underscoring the importance of determining the C factor for soil loss rate estimates. However, such studies are often time-consuming and costly (Wischmeier and Smith, 1978; Bertol et al., 2019). Due to these difficulties, C values can also be derived from literature data or through vegetation indices like the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974), Modified green-red vegetation index (MGRVI), and Visible Atmospherically Resistant Indices Green (ViGREEN) (Panagos et al., 2015; Batista et al., 2017; Barbosa et al., 2019; Costa et al., 2020; Gil and Pacheco, 2020; Félix et al., 2023). In this scenario, the objectives of this work were to quantify forest fires in the Serra da Canastra National Park from 2019 to 2021 and evaluate their impact on the RUSLE C factor and soil loss due to water erosion.

Materials and Methods

Study area

The Serra da Canastra National Park is situated in the south-southwest region of Minas Gerais State, covering 197,787 ha (Brasil, 1972), with 93,000 ha designated as a full protection conservation unit (Brasil, 2000). The full protected area aims to preserve endemic species of flora and fauna and environmental and ecosystem services through the imposition of strict rules, while unregulated areas face challenges arising from unsustainable agricultural management practices, such as recurrent forest fires (Brasil, 2005) (Figure 1).
The park preserves essential ecosystem services for the well-being of populations and protects endemic flora and fauna species. Covers partially the watersheds of Paranaíba, Rio Grande and São Francisco rivers (Brasil, 2005; Cardoso et al., 2019).

The Serra da Canastra National Park features complex geology, characterized by Archean remnants of the Piumhi Group, succeeded by Mesoproterozoic metasedimentary rocks of the Canastra Group and Neoproterozoic rocks of the Araxá Group. These formations are partially covered by Phanerozoic sedimentary rocks of the Marília Formation from the Paraná Basin (Hasui, 2010; Salgado et al., 2019; Silva et al., 2020).

The park's topography ranges from 700 to 1,400 m, with morphostructural compartments marked by alternating plateaus and the presence of thrust and strike-slip faults (Messias and Ferreira, 2019b; Salgado et al., 2019).

The predominant soils, according to the UFV et al. (2010) and the World Reference Base for Soil Resources (WRB) correlates (IUSS, 2015), are Dystrophic Litholic Neosols (Leptosols) and Dystrophic Argiluvic Plinthosols (Plinthosols), which cover 65% of the park. Additionally, there are Haplic Cambisol (Cambisols), Dystrophic Red Oxisol (Ferralsols), Dystrophic Red-Yellow Latosol (Ferralsols) and Eutrophic Red-Yellow Argisol (Acrisols) in a smaller proportion.

The region’s climate, according to Köppen, is Cwa (humid subtropical climate) and Cwb (subtropical highland climate) types, characterized by hot summers and mild winters (Alvares et al., 2013). Rainfall ranges between 1,000 and 1,800 mm, with temperatures fluctuating between 18 and 22 ºC (Novaes et al., 2018).

The Serra da Canastra generally features a phytosociology composed of low, twisted trees with irregular and contorted branches, with shrubs and sub-shrubs. It consists of species with perennial roots, enabling regrowth after burns (Brasil, 2005; Coutinho, 2006).

Methodology

The study comprised four stages: (1) acquisition of the cartographic base; (2) data processing, soil loss modeling, and result validation; (3) data treatment in spreadsheet environment; and (4) obtaining soil loss rates, as illustrated at Figure 2.
In step 1, was obtained: the cartographic base (IBGE, 2022); the geological map of the area (Hasui, 2010); the soil map of Minas Gerais (UFV et al., 2010); hydrography data (ANA, 2023) and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) with 30 m spatial resolution (Farr et al., 2007). The files were processed using ArcMap™ 10.8.2 (ESRI, 2021).

Wildfire scars and rainfall data from 2019 to 2021 were incorporated into the analysis. Fire data and LULC data for the Serra da Canastra National Park were obtained from the MapBiomas Fire Project – Collection 2 database (Mapbiomas, 2022) and the Annual Series Collection 7 of Land Use and Cover Maps of Brazil (Mapbiomas, 2023). The files were processed in a cloud computing environment using the toolkit on the Google Earth Engine platform (Gorelick et al., 2017). Precipitation data were acquired from the Climate Hazards Group InfraRed Precipitation - CHIRPS 2.0 satellite (Funk et al., 2015), due to the absence of a registered hydrometeorological station in the area (ANA, 2023).

In step 2, soil losses were modeled and validated. Water erosion soil losses were assessed using the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997) (Equation 1).

\[
A = R \times K \times LS \times C \times P \tag{Equation 1}
\]

Where: A is the average annual soil loss estimate (Mg ha⁻¹ yr⁻¹); R is the rainfall and runoff erosivity factor (MJ mm ha⁻¹ h⁻¹ yr⁻¹); K is the soil erodibility factor (Mg ha⁻¹ MJ⁻¹ mm⁻¹); LS (length and slope) is the topographic factor (dimensionless); C is the soil cover management factor (dimensionless); and P is the soil conservation practice factor (dimensionless).

The ability of rain to cause erosion, due to the impact of raindrops on the soil and runoff, is determined by the R factor. The R factor was obtained from the rain erosivity map of the Minas Gerais State (Souza et al., 2022).
The K factor reflects the susceptibility of soils to erosion processes and was obtained from Batista et al. (2017), Cabral et al. (2005), Farinasso et al. (2006), Mannigel et al. (2002), Morais and Sales (2017) and Silva et al. (2009). The K values were inserted into the attribute table of the soil map shapefile, which was converted to a raster with a spatial resolution of 30 m by ArcMap™ 10.8.2 (ESRI, 2021).

The LS factor was modeled by Moore and Burch (1986) to determine the LS factor in complex terrains (Equation 2). The LS factor was processed from a DEM with a spatial resolution of 30 m using the raster calculator module in ArcMap™ 10.8.2 (ESRI, 2021).

$$LS = \frac{(FA \times \text{ResDEM})}{22.13^{0.4}} \times \left(\frac{\sin S}{0.0896} \right)^{1.3}$$ \hspace{1cm} \text{(Equation 2)}

Where: LS is the topographic factor; FA is the flow accumulation expressed as the number of grid cells in the DEM; S is the slope of the area in degrees, and ResDEM is the spatial resolution of the DEM (m).

The C factor varies from 0 to 1 and is a measure of the effectiveness of vegetation cover in protecting the soil against water erosion. Values close to 1 indicate low or no vegetation cover and those close to 0 reflect greater soil protection by the canopy.

The NDVI formula, derived from the ratio to determine the C factor, was employed using three approaches. In the first, values determined in experimental plots and available in the literature were utilized (C-Lit). In the other approaches, the NDVI spectral index was used, following the models proposed by Durigon et al. (2014) (Cr factor) and Macedo et al. (2021) (Cr2 factor).

The surface reflectance values of the red (R) and near-infrared (NIR) bands, as proposed by Rouse et al. (1974) (Equation 3):

$$\text{NDVI} = \frac{NIR - R}{NIR + R}$$ \hspace{1cm} \text{(Equation 3)}

Where: NDVI is the Normalized Difference Vegetation Index (dimensionless); NIR is the Near-Infrared surface reflectance (dimensionless); R is the red surface reflectance (dimensionless).

The Durigon et al. (2014) method is described by Equation 4.

$$Cr = \frac{(-\text{NDVI} + 1)}{2}$$ \hspace{1cm} \text{(Equation 4)}

Macedo et al. (2021) method is an adaptation of Equation 4 and considers seasonality and precipitation. For this, the variables Pptx (accumulated precipitation in the quarter before the first scene to calculate NDVI) and Lv (average accumulated precipitation in the quarter following the first scene) are used. Thus, when Lv is lower or equal to Pptx, there is less presence of low-reflectance dry vegetation. In this case, it is necessary to obtain the Cr2 factor (Equation 5).

$$Cr' = \frac{(-\text{NDVI} + z)}{2z}$$ \hspace{1cm} \text{(Equation 5)}

Where: z represents the pixel with the maximum NDVI value.

Thus, when Lv is greater than Pptx, drier vegetation is expected due to seasonality. In this case, the CPC factor (Equation 6) is used to increase NDVI values based on precipitation, which allows the reclassification of dry vegetation targets considered as exposed soil.
The Cr2 calculations involved the processing of precipitation data obtained from the CHIRPS 2.0 satellite (Funk et al., 2015). To obtain the NDVI C factor were used images from Landsat 8 from the OLI sensor, scenes 219/74 and 220/74, Collection 2 and Level 2, with a spatial resolution of 30 m (USGS, 2019). This data includes geometric and atmospheric corrections using the LaSRC 3.0 method (Zanter, 2019). Quarterly average NDVI values were derived from image processing in Google Earth Engine. Adjustments were also made to the scale factor, cloud mask and cloud shadow using the Fmask algorithm, which excluded cloud reflectance values (Zhu and Woodcock, 2014).

To capture seasonality, 102 scenes were processed, around 34 per year, providing broad intra-annual spectral coverage. This seasonal variation is consistent with the positive correlation between NDVI and soil water availability (Pettorelli et al., 2005; Nanzad et al., 2019). Thus, the images result from quarterly averages, which allow the identification of phenological changes, including those affected by forest fires.

The P factor varies from 0 to 1 and indicates the potential of conservation practices in reducing water erosion, with values close to 0 indicating efficient conservation practices (Beskow et al., 2009). P values were determined from the literature, through experimental plots, with values of 0.20 for forest formation, 0.50 for coffee and citrus, 0.56 for Cerrado formation, grassland, forestry, pasture, soybean, sugarcane, mosaic of uses and other temporary crops, and 1 for bare soil (Bertol et al., 2001; Martins et al., 2010; Andrade et al., 2011; Bertoni and Lombardi Neto, 2012; Senanayake et al., 2022).

The results were validated according to Beskow et al. (2009) and Batista et al. (2017), with data on transported sediments, water flow and daily runoff from hydrosedimentological station number 40037000 (ANA, 2023).

The modeling of soil losses by RUSLE does not differentiate between the fraction deposited on the terrain and that reaching water bodies. To overcome this, we integrated the model with the sediment delivery ratio (SDR) to water bodies. For this purpose, we utilized InVEST 3.14 software (Sharp et al., 2018), following the approach outlined by Vigiak et al. (2012).

Results and Discussion

The land use and land cover changes in the Serra da Canastra National Park from 2019 to 2021 are illustrated in Figure 3.

The quantification of land use and land cover data from 2019 to 2021 is presented in Table 1.
Figure 3. Land use and land cover map of the Serra da Canastra National Park. (A) 2019; (B) 2020; (C) 2021
Table 1. Area of land use and land cover classes in hectares (ha) and their respective percentages (%) (Mapbiomas, 2023)

<table>
<thead>
<tr>
<th>Classes</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
</tr>
<tr>
<td>Forest plantation</td>
<td>6.72</td>
<td>0.01</td>
<td>6.72</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>115.45</td>
<td>0.06</td>
<td>115.18</td>
</tr>
<tr>
<td>Citrus</td>
<td>196.91</td>
<td>0.10</td>
<td>155.87</td>
</tr>
<tr>
<td>Other temporary crops</td>
<td>277.95</td>
<td>0.14</td>
<td>272.41</td>
</tr>
<tr>
<td>Other non-vegetated areas</td>
<td>428.35</td>
<td>0.22</td>
<td>438.90</td>
</tr>
<tr>
<td>Soybean</td>
<td>5500.54</td>
<td>2.78</td>
<td>5513.54</td>
</tr>
<tr>
<td>Mosaic of uses</td>
<td>7121.88</td>
<td>3.60</td>
<td>7169.04</td>
</tr>
<tr>
<td>Forest formation</td>
<td>12561.11</td>
<td>6.35</td>
<td>12626.66</td>
</tr>
<tr>
<td>Cerrado formation</td>
<td>17298.03</td>
<td>8.75</td>
<td>17313.03</td>
</tr>
<tr>
<td>Rocky outcrop</td>
<td>19974.27</td>
<td>10.10</td>
<td>19979.61</td>
</tr>
<tr>
<td>Pasture</td>
<td>61565.73</td>
<td>31.13</td>
<td>61223.29</td>
</tr>
<tr>
<td>Grassland</td>
<td>71712.60</td>
<td>36.26</td>
<td>71840.65</td>
</tr>
</tbody>
</table>

Historically, forest fires have been recurrent in the Cerrado, particularly in the Serra da Canastra National Park, representing a serious threat to the preservation of its environmental and ecosystem services (Durigan and Ratter, 2015; Messias and Ferreira, 2019b). In the park, the unregulated areas are those most affected by the fires. Furthermore, they concentrate places with a high recurrence of forest fires, especially at higher altitudes, where there is a predominance of rural physiognomies, which facilitate the spread of fire in the dry season (Messias and Ferreira, 2019b). In the historical series considered, in 2019, fire scars covered 28,166 ha or 14% of the area, in 2020, 61,793 ha or 31%, and in 2021, 7,502 ha or 4% of the park area (Figure 4).

In the park, in 2019, the land use and occupation classes that presented the largest burned areas were: grassland formation with 11,278 ha or 5.7%, pasture with 9,422 ha or 4.8%, and Cerrado formation with 2,268 ha or 1.1% (Figure 4A). In 2020, there was the largest burned area in the park, with grassland formation covering 27,684 ha or 14%, pastures with 12,212 ha or 6.2%, and Cerrado formation with 7,245 ha or 3.7% (Figure 4B). Nevertheless, scars decreased significantly in 2021 and the classes with the largest forest fire areas were grassland formation with 3,264 ha or 1.7%, pastures with 1,530 ha or 0.8%, and Cerrado formation with 983 ha or 0.5% (Figure 4C).
The R factor ranged from 7132.06 to 8401.50 MJ mm ha\(^{-1}\) year\(^{-1}\), with lower values predominating in the south/southeast of the park. Erosivity ranged from moderate to strong (Mello et al., 2013) (Figure 5A).

The park shows high erodibility (Figure 5B). The highest values are observed in Leptosols (Dystrophic Lithic Neosol), covering 34% of the area (Figure 5B). Plinthosols (Dystrophic Argiluvic Plinthosol) and Cambisols (Haplic Cambisol) cover 31% and 18% of the park, respectively, with K value of 0.04 Mg ha\(^{-1}\) MJ\(^{-1}\) mm\(^{-1}\).

The distribution of LS intervals reveals that 64% of the area has values below 5 and 16% above 10 (Figure 5C), indicating moderate and high vulnerability to water erosion, respectively (Beskow et al., 2009) (Table 2).

The C-Lit factor was obtained from experimental plots in different areas described in the literature (Table 3).

| Table 2. Intervals of the LS factor for the Serra da Canastra National Park |
|-----------------------------|-----------------|---|
| Interval | Area (ha) | % |
| 0-1 | 73,049.79 | 37 |
| 1-2 | 14,519.64 | 7 |
| 2-5 | 40,217.70 | 20 |
| 5-10 | 37,852.42 | 19 |
| 10-15 | 15,760.53 | 9 |
| >15 | 16,242.32 | 8 |

| Table 3. Soil cover management factor values (C-Lit factor) |
|-----------------------------|------------------|-----------------|
| Classes | C-Lit Factor | Reference |
| Forest formation | 0.0004 | Silva et al. (2010) |
| Cerrado formation | 0.0020 | Cunha et al. (2017) |
| Forest plantation | 0.0470 | Martins et al. (2010) |
| Grassland | 0.0580 | Cunha et al. (2017) |
| Pasture | 0.1000 | Roose (1977) |
| Sugarcane | 0.1420 | Andrade et al. (2011) |
| Mosaic of uses | 0.1400 | Ayet et al. (2015) |
| Other non-vegetated areas | 1.0000 | Roose (1977) |
| Soybean | 0.1437 | Bertol et al. (2001) |
| Other temporary crops | 0.1500 | Ayet et al. (2015) |
| Coffee | 0.1350 | Silva et al. (2010) |
| Citrus | 0.1350 | Silva et al. (2010) |
Despite presenting lower values for the C factor, C-Lit considers a single value for each land-use class with homogeneous vegetative cover. The C factors derived from NDVI better represent phenological and seasonal variations in coverage, such as droughts and forest fires, as they identify changes in vegetative density within the same land-use class (Almagro et al., 2019) (Table 4).

Table 4. C factor values obtained from NDVI. Source: Cr factor from Durigon et al. (2014) and Cr2 from Macedo et al. (2021)

<table>
<thead>
<tr>
<th>Classes</th>
<th>2019 Cr</th>
<th>2019 Cr2</th>
<th>2020 Cr</th>
<th>2020 Cr2</th>
<th>2021 Cr</th>
<th>2021 Cr2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest formation</td>
<td>0.11</td>
<td>0.07</td>
<td>0.13</td>
<td>0.08</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Cerrado formation</td>
<td>0.21</td>
<td>0.18</td>
<td>0.26</td>
<td>0.24</td>
<td>0.22</td>
<td>0.18</td>
</tr>
<tr>
<td>Forest plantation</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>0.05</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.27</td>
<td>0.24</td>
<td>0.31</td>
<td>0.30</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>Pasture</td>
<td>0.25</td>
<td>0.21</td>
<td>0.28</td>
<td>0.26</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>0.28</td>
<td>0.26</td>
<td>0.32</td>
<td>0.30</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>Mosaic of uses</td>
<td>0.21</td>
<td>0.18</td>
<td>0.25</td>
<td>0.23</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>Other non-vegetated areas</td>
<td>0.36</td>
<td>0.34</td>
<td>0.36</td>
<td>0.35</td>
<td>0.36</td>
<td>0.33</td>
</tr>
<tr>
<td>Soybean</td>
<td>0.27</td>
<td>0.21</td>
<td>0.22</td>
<td>0.19</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Other temporary crops</td>
<td>0.25</td>
<td>0.21</td>
<td>0.30</td>
<td>0.28</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Coffee</td>
<td>0.19</td>
<td>0.13</td>
<td>0.12</td>
<td>0.17</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>Citrus</td>
<td>0.29</td>
<td>0.23</td>
<td>0.20</td>
<td>0.23</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>Average</td>
<td>0.22</td>
<td>0.20</td>
<td>0.22</td>
<td>0.23</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

The average values of the Cr and Cr2 factors were slightly higher in 2020, suggesting that forest fires were the cause of the NDVI increase values. The largest fire scars show warmer colors on the maps (Figures 6E and 6H). For C-Lit, the majority occurs in lower value ranges, which results in the homogenization of land use and land cover classes in the cartographic representation (Figures 6A, 6B and 6C).

The highest average soil loss rate, 71.84 Mg ha⁻¹ year⁻¹, was obtained in non-vegetated areas based on the C-Lit factor (Table 5). In 2020, soil losses followed the same pattern as in 2019. With C-Lit, the lowest soil losses were in the Forest plantation, with 0.11 Mg ha⁻¹ yr⁻¹. Using the Cr and Cr2 factors, the average soil loss rates in 2020 were the highest. Compared to 2019, they were higher by 0.05% with the Cr factor and 0.26% with the Cr2 factor. Compared to 2021, they were higher by 0.05% for Cr and 0.15% for Cr2.

The highest soil loss rates in the time series were observed in cultivated areas, pastures, and non-vegetated areas, which are more vulnerable to erosive processes due to lower vegetation density compared to forests. In 2021, the estimated soil loss rates were the lowest for the different C factors used, reflecting the reduction in forest fires and the consequent increase in soil protection by vegetation cover (Gwapedza et al., 2021; Castro et al., 2022).

Areas with more fragile soils, rugged terrain, low canopy or no vegetation cover, and without conservation practices exhibited higher rates of soil loss (Liu et al., 2020; Lense et al., 2021; Santana et al., 2021). The spatial distribution of areas most susceptible to water erosion is illustrated in Figure 7.
Figure 6. Maps of C factors for Serra da Canastra National Park. (A) C-Lit factor in 2019; (B) C-Lit factor in 2020; (C) C-Lit factor in 2021; (D) Cr factor in 2019; (E) Cr factor in 2020; (F) Cr factor in 2021; (G) Cr2 factor in 2019; (H) Cr2 factor in 2020; (I) Cr factor in 2021

Table 5. The soil loss rate in the Serra da Canastra National Park from 2019 to 2021 using different C factors

<table>
<thead>
<tr>
<th>Use and coverage</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-Lit</td>
<td>Cr</td>
<td>Cr2</td>
</tr>
<tr>
<td>Forest formation</td>
<td>0.11</td>
<td>2.99</td>
<td>2.26</td>
</tr>
<tr>
<td>Cerrado formation</td>
<td>0.20</td>
<td>13.63</td>
<td>12.14</td>
</tr>
<tr>
<td>Forest plantation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grassland</td>
<td>1.00</td>
<td>8.81</td>
<td>8.21</td>
</tr>
<tr>
<td>Pasture</td>
<td>3.25</td>
<td>13.98</td>
<td>12.80</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>3.50</td>
<td>6.59</td>
<td>6.22</td>
</tr>
<tr>
<td>Other non-vegetated areas</td>
<td>71.84</td>
<td>26.08</td>
<td>25.36</td>
</tr>
<tr>
<td>Soybean</td>
<td>2.56</td>
<td>4.61</td>
<td>4.33</td>
</tr>
<tr>
<td>Other temporary crops</td>
<td>3.77</td>
<td>6.26</td>
<td>5.75</td>
</tr>
<tr>
<td>Coffee</td>
<td>4.35</td>
<td>8.27</td>
<td>5.02</td>
</tr>
<tr>
<td>Average Loss</td>
<td>0.75</td>
<td>10.94</td>
<td>9.99</td>
</tr>
</tbody>
</table>
Figure 7. Maps of soil loss estimates from C factors for Serra da Canastra National Park. (A) C-Lit factor in 2019; (B) C-Lit factor in 2020; (C) C-Lit factor in 2021; (D) Cr factor in 2019; (E) Cr factor in 2020; (F) Cr2 factor in 2019; (G) Cr2 factor in 2020; (H) Cr2 factor in 2020; (I) Cr2 factor in 2021

The spatialization of soil loss rates revealed differences between methodologies for obtaining the C factor. C-Lit showed lower values, leading to greater homogeneity in susceptibility to soil loss (Table 6 and Figures 7A, 7B, 7C). On the other hand, Cr and Cr2 showed higher soil loss rates (Table 6 and Figures 7D, 7E, 7F, 7G, 7H, and 7I). The intervals of soil loss rates (Figure 7) are based on Avanzi et al. (2013).

High susceptibilities to water erosion are found in areas that commonly have shallow soils, fertility limitations, and high erodibility (Vasconcelos et al., 2012), such as Cambisols and Neosols. The water infiltration rate in the soil is influenced by the topography, where poorly drained soils are more susceptible to water erosion. Therefore, it is essential to consider soil drainage in the planning of sustainable management practices (Castro and Hernani, 2015).

Vegetative cover plays a fundamental role in soil protection against water erosion, reducing the impact of rainfall, increasing water infiltration rates, and decreasing runoff (Bertoni et al., 2012). Additionally, vegetation contributes to soil stability and improves its structure (Qian et al., 2022; Zhang et al., 2022).
Therefore, the preservation and sustainable management of vegetative cover are essential for the conservation of natural resources, especially soil and water.

The correlation between transported sediments and water flow from 2019 to 2021 is illustrated in Figure 8.

![Figure 8](image)

Figure 8. Sediment transport curve × water discharge in the Serra da Canastra National Park, Minas Gerais, Brazil

Despite the limited amount of data available at the hydrosedimentological station, which resulted in a low R² adjustment (Figure 8), it was possible to validate soil loss rates based on both observed and estimated sediments by the InVEST model (Table 6).

Table 6. Observed sediment at the hydrosedimentological station, sediment estimated by InVEST, and associated error in the Serra da Canastra National Park

<table>
<thead>
<tr>
<th>Year</th>
<th>Sediment observed (Mg ha⁻¹ yr⁻¹)</th>
<th>Estimated sediment (Mg ha⁻¹ yr⁻¹)</th>
<th>C-Lit</th>
<th>Error %</th>
<th>Cr</th>
<th>Error %</th>
<th>Cr2</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>0.021</td>
<td>0.029</td>
<td>38</td>
<td>0.085</td>
<td>300</td>
<td>0.083</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>0.045</td>
<td>0.029</td>
<td>-36</td>
<td>0.086</td>
<td>90</td>
<td>0.088</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>0.015</td>
<td>0.028</td>
<td>93</td>
<td>0.086</td>
<td>470</td>
<td>0.085</td>
<td>467</td>
<td></td>
</tr>
</tbody>
</table>

In Serra da Canastra National Park, sediment generation observed at the hydrosedimentological station ranged from 0.015 to 0.045 Mg ha⁻¹ yr⁻¹. Among the methods used to obtain the C factor, C-Lit presented estimated sediment generation values closest to the observed sedimentation rate. NDVI-based C values identify classes most affected by seasonal or wildfire effects with great precision. Thus, lower NDVI values and, consequently, higher C values, result in greater errors in soil loss estimates, as observed in this study (Durigon et al., 2014; Macedo et al., 2021).

In the park, with the Cr² factor, there was a slight reduction in soil loss rates compared to those with the Cr factor. However, it is essential to highlight that despite overestimates of soil losses, the Cr and Cr² factors are effective in identifying areas with greater susceptibility to erosion and, therefore, both methods can be used in conservation planning of the area and in directing practices of mitigation of soil losses. Therefore, the calculation of the C factor from the NDVI is especially important in tropical regions, such as Brazil, where annual climate variation directly conditions the changes in land use and cover, and, in this way, it is possible to identify spatial and temporal variations in the vegetation cover. Furthermore, aiming to minimize errors in soil
loss estimates, new studies on calculating the C factor by remote sensing in Brazilian territory indicate a path of routines that improve the precision of information obtained from satellite images using meteorological data (Almagro et al., 2019; Macedo et al., 2021).

In the comparison between sediment measured by the hydrosedimentological station and that estimated by InVEST, it is worth highlighting the effectiveness of the approach, supported by recent studies assessing erosive processes and sediment delivery (Hamel et al., 2015; Bouguerra and Jebari, 2017; Matomela et al., 2022).

Forest fires and controlled burns are longstanding management practices in the Serra da Canastra National Park, especially during the dry season (Messias and Ferreira, 2019a; 2019b). In the initial years, forest fires may even increase the nutrient content in the soil, which subsequently declines (Agbeshie et al., 2022). Over time, soil degradation caused by forest fires intensifies water erosion processes, reduces water infiltration rates, increases soil loss rates, impairs ecosystem services (Depountis et al., 2020; Efthimiou et al., 2020; Riquetti et al., 2022), and contributes to greenhouse gas emissions (Friedlingstein et al., 2015). Therefore, fires and forest fires must be avoided and combated in the area, in addition to the need for correct supervision by the responsible institutions, to prevent fires caused by human action.

Conclusions

The soil loss rates in the park ranged from 0.75 Mg ha⁻¹ yr⁻¹ to 12.55 Mg ha⁻¹ yr⁻¹, according to different methods of obtaining the C factors. The NDVI-derived C factors corresponded to the highest soil loss rates, as they reflect the spectral response of non-homogeneous areas. Forest fires represent abrupt changes in land use and land cover, affecting the spectral response of NDVI and directly increasing the C factor and soil loss rates. The sediment delivery rates calculated by InVEST validated the soil loss rates estimated by RUSLE. The assessment of water erosion in extensive areas, such as the Serra da Canastra National Park, is a necessary tool that contributes to defining the best management techniques for the conservation of natural resources and identifying priority areas for the adoption of degradation mitigation measures.

Authors’ Contributions

Conceptualization: GSR, RLM; Data curation: GSR, GHEL; Formal analysis: RLM, JEBA, GSR; Methodology: GSR; Project administration: RLM, GSR; Software: GSR, DBS, GHEL; Supervision: MRL, JEBA, FGR; Validation: GHEL; Visualization: GSR; Writing - original draft: GSR; Writing - review and editing: GSR, DBS, GHEL, FGR, JEBA, RLM. All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

The authors thank the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) for the scholarship offered to the first author. To the “Fundação de Amparo à Pesquisa do Estado de Minas Gerais - Brazil” (FAPEMIG) for the scholarship offered to the third author. This study was financed in
part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

UFV Universidade Federal de Viçosa, Fundação Centro Tecnológico de Minas Gerais CETEC, Universidade Federal de Lavras UFLA, Fundação Estadual do Meio Ambiente FEAM (2010). Mapa de solos do Estado de Minas Gerais Escala 1:650.000 [Soil map of the State of Minas Gerais Scale 1:650,000]. Retrieved 2023 August 14 from: http://www.feam.br/noticias/1/949-mapas-de-solo-do-estado-de-minas-gerais

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License.

© Articles by the authors; Licensee UASVM and SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.

Notes:
- **Material disclaimer**: The authors are fully responsible for their work and they hold sole responsibility for the articles published in the journal.
- **Maps and affiliations**: The publisher stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.
- **Responsibilities**: The editors, editorial board and publisher do not assume any responsibility for the article’s contents and for the authors’ views expressed in their contributions. The statements and opinions published represent the views of the authors or persons to whom they are credited. Publication of research information does not constitute a recommendation or endorsement of products involved.