The use of phytotherapy in hepatocellular carcinoma – a systematic review

Cristina P. URSU1, Emil I. MOIȘ1,2*, Luminița E. FURCEA1,2, Rodica S. POP3, Ștefan URSU1, Diana SCHLANGER1, Andra CIOCAN1,2, Florin V. ZAHARIE1,2, Aida PUIA3, Nadim AL HAJJAR1,2, Florin GRAUR1,2

1"Prof. Dr. Octavian Fodor" Institute of Gastroenterology and Hepatology, 19-21-23 Croitorilor, 400162 Cluj-Napoca, Romania; cristinapaulapop10@yahoo.com; mois.emil@umfcluj.ro (*corresponding author); luminita.furcea@yahoo.com; stefan.ursu20@gmail.com; schlanger.diana@yahoo.com; andra.ciocan@umfcluj.ro; florinzaharie@yahoo.com; nadim.alhajjar@umfcluj.ro; florin.graurf@umfcluj.ro

2"Iuliu Hațieganu" University of Medicine and Pharmacy, Faculty of Medicine, Department of Surgery, 8 V. Babeș, 400012 Cluj-Napoca, Romania

3"Iuliu Hațieganu" University of Medicine and Pharmacy, Faculty of Medicine, Department of Community Medicine, 8 V. Babeș, 400012 Cluj-Napoca, Romania; drsorinapop@yahoo.com; aida.puia@umfcluj.ro

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and the second most frequent cause of cancer-related death worldwide. The aim of this review is to identify whether phytotherapy has an effect over the treatment of HCC or if it is suitable as a combination with chemotherapy. A systematic review was performed in order to offer current information over the use of phytotherapy in HCC. We conducted an electronic search of articles published in English in peer reviewed journals between 2012-2022. After keywords were associated, 302 articles were found. After the exclusion of articles which did not meet the inclusion criteria, there were 77 articles eligible for abstract evaluation. The following were discarded: two case report, one systematic review, 36 in vitro studies and nine studies which discussed other pathologies or with no regard to phytotherapy. The remaining articles encompassed 27 in vivo studies of phytotherapy in hepatocellular carcinoma and two randomized control trials. This selection process is illustrated in the Prisma Flow Diagram. Amongst the evaluated articles, two of them researched the effect of phytotherapy over human subjects in two randomized control trials, while the others illustrated the outcomes of phytotherapy over hepatocellular carcinoma cells and murine specimens. To sum up, phytotherapy has proven its usefulness in hepatocellular carcinoma, especially throughout the following mechanisms: anti-inflammatory effect, suppressing malignant cell proliferation, inhibiting angiogenesis, stimulating apoptosis, and even sensitizing cells to chemotherapy.

Keywords: hepatocellular carcinoma; medicinal herbs; traditional Chinese medicine; traditional Korean medicine
Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumours and the second most frequent cause of cancer-related death worldwide. Hepatocellular carcinoma acts as the most common type of primary liver neoplasm, the majority of cases are developing in the context of chronic liver damage and inflammation, especially due to chronic hepatitis B virus or hepatitis C virus infections and chronic alcohol intake. The incidence of nonviral HCC is increasing, notably in developed countries. Non-alcoholic fatty liver disease or metabolic associated fatty liver disease leads to non-alcoholic steatohepatitis (NASH), resulting in liver cirrhosis and lastly, in HCC (Boyer et al., 2012; Tang et al., 2017).

Early-stage clinical symptoms of this pathology are nonspecific; therefore, patients were usually diagnosed at an intermediate or advanced stage. Latter advances in early diagnosis and treatment have improved the short-term prognosis of patients with HCC, but there are still limited treatment options available. At the present moment the main therapies for HCC encompass liver resection (LR), radiofrequency ablation (RFA), liver transplantation (LT), trans arterial chemoembolization (TACE), Sorafenib and also symptomatic treatment for stage D, according to Barcelona Clinic Liver Cancer staging system (BCLC) (Reig et al., 2022). Surgical resection is an optimal option for very early stage or early-stage HCC patients with preserved liver function, whilst patients who present with severe liver dysfunction may be considered for LT. The European Association for the Study of the Liver (EASL) Guidelines provides recommendations regarding liver transplant for BCLC 0, A and even the first subgroup of B stage patients, laying out specific criteria for each category. In spite of these treatment possibilities, early-stage diagnosis of HCC is difficult and it has a poor prognosis, thus explaining the extensive research for new methods of diagnosing and treating this pathology (Bishayee et al., 2012; Zamora-Valdes et al., 2017; Reig et al., 2022).

In view of the above-mentioned treatment paths, there is a critical need for searching for alternative approaches, as the use of phytochemicals obtained from dietary sources which offers a preventive and therapeutic approach over HCC (Bishayee et al., 2012; Yang et al., 2022). Phytochemicals have antioxidant, anti-inflammatory and anti-proliferative effects, which can combat the oxidative stress and inflammation involved in liver cancer (Bishayee et al., 2012; Yang et al., 2022). There are many herbal medicines which have proven their efficiency as anti-inflammatory agents and therefore have the capacity of suppressing the development of hepatocellular carcinoma. Clinical trials and reviews are warranted in order to explore the effectiveness of herbal medicine in both prevention and treatment of HCC (Rino et al., 2015; Farazuddin et al., 2019).

Traditional Chinese Medicine (TCM) possesses curative effects in hepatocellular carcinoma. As for example Fuzheng Jiedu Xiaoji formulation (FZJDXJ) is composed of modified Chinese classical blends, such as Angelicae sinensis decoction or Dang-gui-bu-xue-tang (DBGX) and Si-jun-zi decoction (SJZ), Paris polyphylla Sm and Pinellia ternata Makino, commonly prescribed for hepatoma treatment in Beijing Ditan Hospital. These mixtures inhibit apoptosis induced by Ang-II, have antioxidant effects, induce cell cycle arrest in human gastric cancer, and HepG2 cell apoptosis, especially Pinellia ternata Makino (Yang et al., 2021).

Traditional Korean Medicine (TKM) carries out benefits for patients with HCC by improving their quality of life and maintaining tumour size. Lately, TKM has been highly used in cancer treatment. Jang et al. (2018) published a case report describing a 62-years old Korean woman with HCC and lung metastases, who went under associated treatment with TKM and Sorafenib after going under surgery and six cycles of adjuvant chemotherapy and treated afterwards only with Sorafenib, but with no regression and also experiencing most of the side effects of the treatment. Following 8 weeks of TKM treatment, the size of the metastatic nodules decreased and the tolerance for Sorafenib’s side effects improved, thus endorsing the advantages of using TKM in combination with standard treatment for HCC and extrahepatic metastasis (Jang et al., 2018).

Newly identified or recurrent HCC patients, who cannot meet criteria for curative therapies, are in need of further adjuvant methods of treatment. Western medicine has its demonstrated advantages over treating
subjects who suffer from hepatocellular carcinoma, but still the five-year survival rate is somber. Chinese Herbal Medicine (CHM) for example, has been used in the treatment of HCC patients for many years, and have been proven to be an efficacious and safe option for cirrhosis and chronic hepatitis. Moreover, there is a lot of experience in using CHM in preventing and treating HCC, proven in a series of in vitro studies. For this reason, we propose a systematic review of the existing literature regarding the efficacy of herbal medicine in hepatocellular carcinoma, in both in vitro and in vivo studies (Bishayee et al., 2012; Xu et al., 2016; Zamora-Valdes et al., 2017; Yang et al., 2021; Reig et al., 2022).

Aim of the review

The aim of this review is to identify whether herbal medicine has an effect over the treatment of hepatocellular carcinoma or if it is suitable as a combination with the standardized treatment used for this pathology.

Research questions:

1. Which is/are the herbal medication/herbs used in the treatment of hepatocellular carcinoma?
2. What effects does herbal medicine have over hepatocellular carcinoma cells?

Materials and Methods

A systematic review was performed in order to offer current information over the use of phytotherapy in hepatocellular carcinoma.

Search strategy:

We conducted an electronic research of articles published in English in peer reviewed journals between 2012-2022. The research process took place in October 2022. A combination of the following search terms was used: phytotherapy, hepatocellular carcinoma, herbal medicine, and in vivo studies. The search strategy was limited to the following electronic databases: PubMed, PsycINFO, CINAHL.

Inclusion criteria

This research includes all the articles which show the use of at least one herbal substance/formulation in hepatocellular carcinoma studies.

Exclusion criteria

The articles excluded from the present research were published earlier than 2012, in other languages than English, not referring to the subject, studies referring to paediatric patients or studies which have not used at least one herbal substance or medicine in order to treat or influence the prognosis of hepatocellular carcinoma. Literature reviews were as well discarded.

Data extraction

The abstracts of these articles were read to detect duplicates and identify articles for full copy retrieval. The articles were then reviewed independently by different members of the team. In addition, the medicinal herbs were categorized according to their clinical or molecular implications. The process for this entailed: identifying the herbs referred to by each article and determining the effects of these in hepatocellular carcinoma. After the initial data collection phase, the reviewers’ reports were independently cross-checked and items for clarification were discussed and resolved at a face-to-face meeting.
Results

After keywords were associated, 302 articles were found. Articles published in other language than English were excluded (n=37), as well regarding articles issued outside a 10-year period (n=129). Afterwards, articles which were not referring to the subject matter (n=58) or concerning paediatric patients (n=1) were excluded. There were 77 articles eligible for abstract evaluation, from which the following were discarded: two case reports, one systematic review, 36 in vitro studies and nine studies which discussed other pathologies or with no regard to phytotherapy. The remaining 29 articles encompassed 27 in vivo studies of phytotherapy in hepatocellular carcinoma and two randomized control trials. These articles were included in the final analysis. This selection process is illustrated in the Prisma Flow Diagram (Figure 1).

Figure 1. Prisma Flow Diagram for the selected studies included in the systematic review (records identified from PubMed, Embase and Cochrane database)

The list of articles and associated selected information from the data extraction process is presented in Table 1.
Table 1. Author name and year of publication, title of the article from which we extracted information, botanical substance, the aim of the study presented in the articles and the effects of the plants stated before

<table>
<thead>
<tr>
<th>Author name, year</th>
<th>Title of article</th>
<th>Botanical substance/ name of plants</th>
<th>The aim of study</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al., 2021 [1]</td>
<td>Calendula E (CE) inhibits HepG2 cell proliferation and migration via p38/JNK/HMG1 signaling axis</td>
<td>CE is the major natural pentacyclic triterpenoid saponin Aviculina plants such as Panax japonica and Aralia elata</td>
<td>To explore the effects of CE on HepG2 cell proliferation and migration</td>
<td>Anti-inflammatory effect</td>
</tr>
<tr>
<td>El-Said et al., 2018 [2]</td>
<td>Rheum palmatum root (RPR) extract inhibits hepatocellular carcinoma in rats treated with diethylnitrosamine</td>
<td>RPR (Chinese rhubarb) – 16 compounds to antihyperoxic agents, flavonoids, and tannins</td>
<td>To investigate the potential anticancer properties of RPR against HCC-induced in adult male rats</td>
<td>Exhibited antitumorigenic activity</td>
</tr>
<tr>
<td>Song et al., 2021 [3]</td>
<td>Ganoderma lucidum spore polysaccharide (GLSP) inhibits the growth of hepatocellular carcinoma cells by altering macrophage polarity and induction of apoptosis</td>
<td>Ganoderma lucidum spore polysaccharide (GLSP)</td>
<td>To reveal the specific biological mechanism of GLSP to enhance immunity and to inhibit the growth of hepatocellular carcinoma cells</td>
<td>Promoting the secretion of various inflammatory factors and cytokines</td>
</tr>
<tr>
<td>Fauzadulha et al., 2014 [4]</td>
<td>Chemotherapeutic potential of curcumin-bearing microcapsules against hepatocellular carcinoma in model animals</td>
<td>Curcuma longa</td>
<td>To assess the anticancer efficacy of curcumin against DEN-induced HCC in model animals</td>
<td>Demonstrated that curcumin-bearing microcapsules and PLGA microparticles were non-toxic to living cells</td>
</tr>
<tr>
<td>Sadek et al., 2017 [5]</td>
<td>The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract (MOLEE) against hepatocellular carcinoma in rats</td>
<td>Moringa oleifera leaf extract</td>
<td>To assess the chemo-prophylactic proficiency and other likely activities of MOLEE against DEN-induced HCC</td>
<td>MOLEE has fundamental antioxidant and phenolic compounds that ensure intensification against oxidative changes</td>
</tr>
<tr>
<td>Joseph et al., 2013 [6]</td>
<td>Anti-cancerous efficacy of Ayurvedic milk extract of Semecarpus anacardium (SA) nuts on hepatocellular carcinoma in Wistar rats</td>
<td>Semecarpus anacardium (SA) (Varnish tree)</td>
<td>To determine the anti-cancerous efficacy of Ayurvedic preparation made of SA nuts</td>
<td>Reduced AST and ALT</td>
</tr>
<tr>
<td>Song et al., 2015 [7]</td>
<td>Protective Effects of Total Glaucoses of Panaxa (TGP) on N-nitroso-diethyl-amine-induced Hepatocellular Carcinoma in Rats via</td>
<td>TGP is extracted from the root of Panaxa lactiflora and contains hydroxyl-panosiferin, pannonin, althollin and benzoyl-panosiferin</td>
<td>To determine the anti-tumor effect of TG against DEN-induced HCC in rats, and to find the related mechanism</td>
<td>Decreased the mortality rate and the number of nodules and index of liver and spleen</td>
</tr>
</tbody>
</table>

Note: FZJDXJ contains Cudonopsis pilosula Atractylodes macrocephala Atractylodes membranaceae Parisia cocos Adenandra straus Radi c ephipogonius Angelica sinensis Rehmannia glutinosa Paris polyphyllos Carcuma phaeocaulis Pinella ternata
| Wu et al., 2018 [9] | Effects of Dahuang zhechong pill (DHZCP) on doxorubicin-resistant SMMC-7721 xenografts in mice | DHZCP contains 12 traditional Chinese medicinal herbs: Eupolyphaga Sus Scopoli, Rheum palmatum L., Scutellaria baicalensis Gagnep., Glycyrrhiza glabra L., Prunus persica Batsch., Armeniaca daurica Borkh., Passenia affinis L., Rhamnus glutinosus DC., Toxicodendron vernicifluum F.A. Barkley., 10 Taxus baccatafata Matsumurea Hirudo, and Helicteris diisphalma Bats. | To investigate the ability of DHZCP to reverse doxorubicin resistance of SMMC-7721 cell in a xenograft mouse model, and to explore the underlying mechanism | ✓ The levels of AST, ALT, ALP and AFP were significantly decreased
✓ The level of Raff was decreased significantly positively correlated with IL-10 |
|---|---|---|---|---|
| Chang et al., 2021 [10] | Microalgal extract from thermotolerant *Coelastrella* sp. F50 retards the liver tumor progression by targeting hepatic cancer stem cells | Thermotolerant green microalgae *Coelastrella* sp. F50 | To elucidate the antitumor activity and mechanism of microalgal extract from thermotolerant *Coelastrella* sp F50 (F50) in HCC | ✓ A relatively high dose of F50 extract was required to inhibit the invasiveness and anchorage-independent growth of HCC cells
✓ Possesses a unique inhibitory function on hepatic cancer stemness
✓ Decreased the protein level of CD133 and ABCG2 and contributed to F50-mediated CSCs suppression
✓ AST/ALT ratio was significantly diminished
✓ Induced apoptosis and inhibited proliferation and CD133/ABCG2 expression in hepatoma tissues
✓ Repressed COX-2/prostaglandin E2 axis in vitro and in vivo |
| Abdel-Hamid et al., 2013 [11] | Can methanolic extract of *Nigella sativa* (NS) seed affect glycolregulatory enzymes in experimental hepatocellular carcinoma? | *Nigella sativa* (NS) | To investigate the modulating role of NS on premalignant perturbations in three glycolregulatory enzymes in an experimental rat model of HCC | ✓ Significantly decreased the serum AFP level and the activities of HK, GAPDH and G6PD
✓ Animals pre-treated with NS showed minimal changes in hepatocyte morphology and histology |
| Thoppil et al., 2012 [12] | Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma | Black currant skin extract (BCSE) | To elucidate the underlying antioxidant mechanism of black currant anthocyanins implicated in the previously observed chemo-preventive effects against experimental hepatocarcinogenesis | ✓ Upregulated the gene expression of several hepatic antioxidants and carcinogen detoxifying enzymes
✓ Exert chemo-preventive actions by attenuating oxidative stress through activation of Nrf2 signaling pathway |
| Tang et al., 2020 [13] | Epigallocatechin gallate induces chemo-preventive effects on rats with diethyl-nitrosamine-induced liver cancer via inhibition of cell division cycle 25A | Epigallocatechin gallate (EGCG), the most active monomer in green tea | To investigate the anti-tumor and preventive effect of EGCG on HCC via the inhibition of CDC25A | ✓ Inhibited cell viability in human hepatoma cell lines
✓ Caused cell cycle arrest in HepG2 cells
✓ Induced CDC25A downregulation in HepG2 cells
✓ Induced p21wt1/cyclur3 upregulation in HepG2 cells
✓ Chemopreventive effects against HCC in vivo
✓ Reduced significantly GGT level
✓ Reversed HCC-induced elevation of CDC25A and reduction of p21wt1/Cyclur3 |
| Chou et al., 2017 [14] | Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 | Zuo-Jin-Wan (ZJW) is composed by two herbs: *Coptis chinensis* (CC) and *Evodia rutaecarpa* (ER) | To investigate the anti-cancer effects and mechanisms of ZJW, CC, ER, berberine, and evodiamine in vitro and in vivo. | ✓ Significantly displayed cytotoxicity in a dose-and time-dependent manner
✓ Potential anti-tumor promoting agent in liver
✓ Oral administration of ZJW exhibited anti-cancer effects by decreasing the weight of tumor |
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Title and Details</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man et al., 2015</td>
<td>[15]</td>
<td>Turmeric enhancing anti-tumor effect of Rhei palmatis saponins by influencing their metabolic profiling in tumors of H22 hepatocarcinoma mice</td>
<td>Turmeric belonging to Curcuma longa (RT) and Rhizoma palmatis saponins (RSP) extracted from Paris polyphyllus (RSP) To investigate the progression of the biochemical response to RT and capture metabolic variations during intragraft administration of their compatibility.</td>
</tr>
<tr>
<td>Liu et al., 2014</td>
<td>[16]</td>
<td>Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models</td>
<td>Pulsatilla saponin A is an active compound from Pulsatilla chinensis To investigate the inhibiting growth effect on hepatocellular carcinoma</td>
</tr>
<tr>
<td>Chen et al., 2015</td>
<td>[17]</td>
<td>Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest</td>
<td>Alpha-pinene To assess the inhibitory effect of alpha-pinene on hepatocellular carcinoma and investigate the molecular mechanism</td>
</tr>
<tr>
<td>Darzeh et al., 2013</td>
<td>[18]</td>
<td>Chemopreventive and hepatoprotective effects of Epigallocatechin-gallate against hepatocellular carcinoma: role of heparan sulfate proteoglycan pathway</td>
<td>Epigallocatechin-gallate, polyphenolic catechin, abundant in green tea To determine the chemopreventive and hepatoprotective effects of Epigallocatechin-gallate</td>
</tr>
<tr>
<td>Abdelmonoem et al., 2018</td>
<td>[19]</td>
<td>Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma</td>
<td>Diosmin or diosmetin 7-O-rutinoside (DSN) and berberine chloride (BBR), an isoquinoline alkaloid (BRB), an isoquinoline alkaloid To prove antitumor superiority of the combined drug nanocarriers compared with free drugs</td>
</tr>
<tr>
<td>Shi et al., 2016</td>
<td>[20]</td>
<td>Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis</td>
<td>Evodiamine, a bioactive alkaloid isolated from dried and nearly ripe fruits of Evodia rutacarpa (Rutaceae) Evodiamine inhibits cellular invasion and migration and blocks angiogenesis, therefore could be a potential therapeutic agent for HCC</td>
</tr>
<tr>
<td>Zhong et al., 2018</td>
<td>[21]</td>
<td>Ellagic acid synergistically potentiates inhibitory activities of chemotherapeutic agents to human hepatocellular carcinoma.</td>
<td>Ellagic acid, a natural polyphenolic compound, produced especially in nut galls and pomegranate To investigate the antitumor activity of Ellagic acid, focusing on its stimulating effects on doxorubicin hydrochloride (DOX) and cisplatin (DDP)</td>
</tr>
<tr>
<td>Bu et al., 2015</td>
<td>[22]</td>
<td>The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic liver fibrosis via paracrine inhibition of activated hepatic stellate cells.</td>
<td>Songyin Yin (SYY), herbal compound, has the ability to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by hepatic stellate cells (αHSCs)</td>
</tr>
</tbody>
</table>
| Lin et al., 2014 | [23] | Livistona chinensis seeds inhibit hepatocellular carcinoma angiogenesis | *Livistona chinensis*, belongs to the monocotyledonous Palmaeae family, being a natural source of anti-angiogenic compounds. To investigate the role of *Livistona chinensis* seeds in cancer treatment, especially | ✓ Promoting cancer cell apoptosis in hepatocellular carcinoma \✓ Supressing the expression of VEGF-A and
| Wang et al., 2013 [24] | Steroidal saponin of *Trillium tschonoskii* reverses multidrug resistance of hepatocellular carcinoma. | *Trillium tschonoskii* (TTS) is a traditional Chinese medicine, also called Yan Ling Chao. | TTS has the potential ability of reversing the multidrug resistance in hepatocellular carcinoma cells and enhance chemosensitivity. | \(\checkmark \) VEGF-R2 in tumor tissues, more exactly inhibiting tumor angiogenesis. | \(\checkmark \) Inhibiting the expression of Notch, Dll14 and Jagged1. | \(\checkmark \) TTS was found to suppress colony-formation dose-dependently, thus inhibiting HCC cells proliferation. | \(\checkmark \) TTS reserved the MDR of R-HepG2, increasing the sensitivity of these cells to chemotherapeutic agents in vitro and in vivo. | \(\checkmark \) TTS stopped tumor cells proliferation and enhanced toxicity of DOX in HCC cells, by considerably reducing Ki67 positive rate. |
| Xia Li et al., 2018 [25] | Ginsenoside Rg3 decreases NHE1 expression via inhibiting EGF-EGFR-ERK1/2-HIF-1α pathway in hepatocellular carcinoma: a novel antitumor mechanism. | Ginsenoside Rg3 is the main pharmacologically bioactive compound extracted from China’s herb ginseng. | Ginsenoside Rg3 could inhibit HCC cells proliferation, induce apoptosis and inhibit angiogenesis. | \(\checkmark \) \(\checkmark \) \(\checkmark \) Rg3 significantly decreased NHE1 mRNA expression in a concentration-dependent manner compared with the controls in Bel-7402 and HCCLM3 cells. | \(\checkmark \) \(\checkmark \) \(\checkmark \) Rg3 treatment significantly decreased EGF protein expression compared with the controls. | \(\checkmark \) \(\checkmark \) \(\checkmark \) Rg3 blocked NHE1 expression through inhibiting EGF-ERK1/2-HIF-1α pathway. |
| Wang et al., 2015 [26] | Inhibition of eukaryotic elongation factor-2 confers to tumor suppression by an herbal formulation Huanglian-Jiedu Decoction (HLJDD) in human hepatocellular carcinoma. | Huanglian-Jiedu Decoction is an ancient herbal formula that reduces neutrophil infiltration and suppresses pre-apoptotic differentiation. | HLJDD has a possible ability of liver protection and anti-cancer effects therefore is thought to be useful in treatment of liver diseases and cancer. A recent study has shown that this formulation inhibits human liver cancer in vitro. | \(\checkmark \) \(\checkmark \) MP1I inhibits HepG2 and Hep-7 cell proliferation. | \(\checkmark \) MPII improves sensitivity of chemotherapeutics and decreases the toxicity and dose of chemotherapeutics. | \(\checkmark \) In combination with 5-FU has higher sensitization than either drug alone. | \(\checkmark \) Inhibits tumor growth in H22 and MHCC97H cell transplantable tumors in vivo. |
| Nanda et al., 2017 [27] | Hepatoprotective Mongolian prescription II (MPII) enhances the antitumor effects of chemotherapeutics in hepatocellular carcinoma xenografts. | Hepatoprotective Mongolian prescription II is a mixture of 18 different medical herbs (*Terminalia chebula, Carthamus tinctorius, Radix glycyrrhiza* are the primary ingredients) | MPII can induce apoptosis and cell cycle arrest thus becoming an anticancer agent. | \(\checkmark \) \(\checkmark \) \(\checkmark \) | Suppressing tumor transplantation induced PGE2 production thus having an anti-tumor immunostimulatory activity. | Activating JAK3/STAT5 anti-apoptotic pathway in CD4+ T cells. | \(\checkmark \) Downregulation of COX-2 expression in TAMs. |
| Sha et al., 2015 [28] | Antitumor immunostimulatory activity of polysaccharides from *Salvia chinensis* Benth. | *Salvia chinensis* Benth is a traditional Chinese medicine, found in the South-Central China. *S. chinensis* consists of flavonoids and polysaccharides. Flavonoids can induce HCC cell apoptosis. | To evaluate the antitumor activity of PSSC against H22 cells and the toxicity of PSSC on tumor-bearing animals. | \(\checkmark \) | \(\checkmark \) Suppressing tumor transplantation induced PGE2 production thus having an anti-tumor immunostimulatory activity. | Activating JAK3/STAT5 anti-apoptotic pathway in CD4+ T cells. | \(\checkmark \) Downregulation of COX-2 expression in TAMs. |
| Xu et al., 2016 [29] | Jian Pi Li Qi decoction alleviated postembolization syndrome following transcatheter arterial chemoembolization for hepatocellular carcinoma. | Jian Pi Li Qi decoction is an often-used formulation in China. It is known to improve liver function and immune function impairment in vivo caused by chemotherapy. | Because of previous research that showed the efficiency of PLQ in improving the effects and lower the side effects of TACE, it is thought that PLQ could prevent and treat Postembolization Syndrome. | \(\checkmark \) | \(\checkmark \) Patients receiving PLQ experienced a relieve regarding to the following symptoms: fever, pain, fatigue, lack of appetite, drowsiness, dry mouth, constipation, but without statistical difference among the 3 groups during 3 days after TACE besides drowsiness and dry mouth. | \(\checkmark \) After TACE, both TB and AST/ALT levels were lower in the herbal medicine group. |

Abbreviations: FZ/DXJ-Fuzheng Jiedu Xiaoji formulation; AKI-Protein kinase B pathway; OS-one-year overall survival; PFS-progression-free survival; TACE-transcatheter arterial chemoembolization; CE-Calenduloside E; HepG2 : -RPR- Rheum palmatum root; TGF-β1-transforming growth factor beta 1; DEN-induced HCC- diethylnitrosamine-induced HCC; PLGA- a non-enzymatically-degradable polymer; TNF-α-tumor necrosis factor-alpha; MOLEE- *Moringa oleifera* leaf ethanol extract; AFP-Alpha fetoprotein; CEA-Carcinoembryonic antigen; SA- *Semecarpus anacardium*; AST-aspartate aminotransferase; ALT-alanine aminotransferase; AKP-alkaline phosphatase; GGT-gamma-glutamyl transferase; TGP- Total Glucosides of Paony; BAFF- B-cell activating factor; DOX-doxorubicin; GAPDH-glyceraldehyde-3-phosphate dehydrogenase; G6PD- glucose-6-phosphate dehydrogenase.
Amongst the evaluated articles, two of them (6.89%) researched the effect of phytotherapy over human subjects in two randomised control trials, while the other 27 articles (93.10%) illustrated the outcomes of phytotherapy over hepatocellular carcinoma cells and rodents (mice, rats). In 20 of the situations above mentioned the studies used active compounds extracted from one plant, with 9 articles describing the use of specific formulations, which are registered as traditional medicine.

After analysing the articles aforementioned, a series of outcomes was observed. These effects can be divided into two major categories: molecular effects (Table 2) and then both clinical and paraclinical results (Table 3).

The molecular effects demonstrated through the use of herbal medicine in HCC are: inhibiting tumour cells proliferation, anti-inflammatory effect, induced or enhanced apoptosis and reducing angiogenesis (Table 2).

Table 2. Molecular effects and the plants responsible for them

<table>
<thead>
<tr>
<th>Inhibiting tumor cells proliferation</th>
<th>Anti-inflammatory effect</th>
<th>Induced/ Enhanced apoptosis</th>
<th>Reducing angiogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzheng Jiedu Xiaoji</td>
<td>Calenduloside E</td>
<td>Ganoderma lucidum spore poly saccharide</td>
<td>Curcuma longa</td>
</tr>
<tr>
<td>Calanduloside E</td>
<td>Ganoderma lucidum spore poly saccharide</td>
<td>Curcuma longa</td>
<td>Euodia rutaecarpa</td>
</tr>
<tr>
<td>Ganoderma lucidum spore poly saccharide</td>
<td>Curcuma longa</td>
<td>Paonia lactiflora</td>
<td>Livistona chinensis</td>
</tr>
<tr>
<td>Curcuma longa</td>
<td>Paonia lactiflora</td>
<td>Coelastrella sp F50</td>
<td>Huanglian Jiedu Decoction</td>
</tr>
<tr>
<td>Semecarpus anacardium</td>
<td>Paonia lactiflora</td>
<td>Coelastrella sp F50</td>
<td></td>
</tr>
<tr>
<td>Paeonia lactiflora</td>
<td>Fuzheng Jiedu Decoction</td>
<td>Coelastrella sp F50</td>
<td></td>
</tr>
<tr>
<td>Dahuang zhenchong pill</td>
<td>Coelastrella sp F50</td>
<td>Pulsatilla saponin A</td>
<td></td>
</tr>
<tr>
<td>Coelastrella sp F50</td>
<td>Ellagic acid</td>
<td>Songyou Yin</td>
<td></td>
</tr>
<tr>
<td>Epigallocatechin gallate (green tea)</td>
<td>Pulsatilla saponin A</td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Zuo-Jin-Wan</td>
<td>Ellagic acid</td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Curcuma longa & Rhizoma paridis</td>
<td>Songyou Yin</td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Pulsatilla saponin A</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>α - pinene</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Diosmin & berberine chloride</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Euodia rutaecarpa</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Trillium tschonoskii</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Chinese herb gindeng</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Huanglian Jiedu Decoction</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Mongolian prescription II</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
<tr>
<td>Salvia chinensis Benth</td>
<td></td>
<td>Livistona chinensis</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Clinical and paraclinical effects and the plants responsible for these outcomes

<table>
<thead>
<tr>
<th>Prophylaxis</th>
<th>Reducing complication</th>
<th>Reducing mortality</th>
<th>Reducing hepatocytolysis</th>
<th>Lowering tumor markers</th>
<th>Sensitizing cells to chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheum palmatum</td>
<td>Fuzheng Jiedu Xiaoji</td>
<td>Curcuma longa</td>
<td>Moringa oleifera</td>
<td>Dahuang zhechong pill</td>
<td></td>
</tr>
<tr>
<td>Moringa oleifera</td>
<td>Fuzheng Jiedu Xiaoji</td>
<td>Semecarpus anacardium</td>
<td>Ellagic acid</td>
<td>Trillium tschonoskii</td>
<td></td>
</tr>
<tr>
<td>Semecarpus anacardium</td>
<td>Zuo-Jin-Wan</td>
<td>Paonia lactiflora</td>
<td>Nigella sativa</td>
<td>Mongolian prescription II</td>
<td></td>
</tr>
<tr>
<td>Black currant skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epigallocatechin gallate (Green tea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As for clinical and paraclinical outcomes, these are as follows: prophylaxis, reducing complications rate, reducing mortality rate, reducing liver enzymes, decreased levels of tumoral markers and raising sensitivity to chemotherapeutic agents (Table 3).

Inhibiting malignant cell proliferation was proven in almost all 29 studies, except for three situations: Moringa oleifera leaf, Black currant skin extract, both possessing an anti-oxidation effect and Livistona chinensis expressing an important inhibitory effect over angiogenesis.

The suppression of cell proliferation was demonstrated in almost all the studies on HepG2 cells, because of an enhanced cytotoxicity against these cells. The herbs which showed such an effect are: Canduloside E, Curcuma longa, Mongolian prescription II. Other type of malignant cells on which the studies were conducted are H22 cell lines, in murine subjects, where GLSP inhibited cell proliferation with the help of activated macrophages and MPII inhibited tumour growth. Moreover, MPII inhibited the proliferation of Huh-7 cells. In addition, cell growth was ceased in BEL-7402 cells by Alpha-pinene.

The anti-inflammatory effect was proven in the studies using the following herbs: Calunduloside E, Ganoderma lucidol, Curcuma longa, Paeonia lactiflora, Coelastrella, alpha-pinene and Salvia chinensis. There is a list of herbs, that have proven their influence in decreasing inflammation through cyclines, inhibiting TNF, reducing cytokines and prostaglandins activity thus reducing the peritumoral edema.

Apoptosis is induced by the following medicinal herbs: Curcuma longa, Coelastrella, Pulsatilla saponin A, Diosmin and Berberine, Ellagic acid Livistona and Salvia chinensis. The same outcome was observed for the formulations containing 12 plants as is Dahuang zhechong or including 5 herbs as Songyou Yin. Rheum palmatum and Paeonia, found in DHZCP have shown their effect in both inducing apoptosis and inhibiting tissular proliferation.

A major advantage for the uptake of medicinal herbs during therapy for hepatocellular carcinoma is reducing the level of transaminase, which was shown while using Curcuma longa, Semecarpus anacardium, Paeonia lactiflora, Coelastrella sp F50, Nigella sativa, Epigallocatechin gallate. Jian Pi Li Qi decoction is a formulation used in the Traditional Chinese Medicine for having positive effects over liver function, especially after chemotherapy, therefore being useful in the treatment of HCC.

There are a few concoctions used in the TCM, such as Fuzheng Jiedu Xiaoji and Zuo-Jin-Wan, which reduce the rate of complications for this pathology. Fuzheng Jiedu Xiaoji also proved it’s efficiency in reducing HCC mortality. Other herbs that attested a positive outcome regarding the mortality rate where Curcuma longa and Paeonia lactiflora.

Moringa oleifera leaf, Paeonia lactiflora, Nigella sativa have a favourable effect reducing the level of tumor markers.

Rheum palmatum, Moringa oleifera, Semecarpus anacardium, Black currant skin, Epigallocatechin gallate (green tea) had shown major prophylactic benefits concerning several actions: antioxidation, antimitagenic and also throughout carcinogen detoxifying enzymes or activation of capsase-3-apoptotic pathway and restoration of proteoglycans.

Discussion

The use of phytotherapy provides multiple benefits for patients diagnosed and treated for hepatocellular carcinoma. Taking into consideration the fact that this illness is still imposing difficulties in early diagnosis thus patients having either treatment option issues or an impaired quality of life, herbal medicine has shown its advantages. (Bishayee et al., 2012; Reig et al., 2022) There are several effects of phytotherapy that will be discussed at length: the useful combination between TACE and herbal medication, important for reducing the incidence of complications in HCC, enhancing performance status in B stage patients and inhibiting tumour cell proliferation, or ameliorating postembolisation syndrome; reducing oxidative stress; antimitagenic effects
and increasing tumour cells’ sensitivity for chemotherapeutic drugs (Yang et al., 2021; Xu et al., 2015; Thoppil et al., 2012; Sadek et al., 2017; El-Saied et al., 2018; Wu et al., 2018).

TACE is one of the standardized treatments of hepatocellular carcinoma, widely used due to its benefits. Most patients with HCC are diagnosed while at an intermediate or advanced stage, with few therapeutic options available, thus being the reason for using TACE, in accordance with BCLC. The chemotherapeutics commonly used for TACE are Cisplatin, for inhibiting DNA replication and transcription and Pirarubicin, which inhibits DNA polymerase, prevents nucleic acid synthesis and as well, cell transition from G2 to M phase. Despite these benefits, recurrence and metastasis after TACE are possible, therefore the combination of this type of therapy and effective drugs, such as TCM, may improve the process of blocking the tumour progression (Galle et al., 2017; Yang et al., 2022). The results of a randomized clinical trial using FZJDXJ treatment were a prolonged overall survival and reduced overall mortality rate in patients, especially those included in BCLC A and B stages. The mortality analysis proved that patients in stages A and B had a reduced incidence of HCC complications, including abdominal infection, encephalopathy, multiple metastases, rupture, or haemorrhage of HCC. This Traditional Chinese concoction had a significant effect on performance status lengthening in B stage patients and inhibited tumour cell proliferation for the same category of individuals. All in all, FZJDXJ inhibited tumour progression (Yang et al., 2021).

Postembolization syndrome (PES) is a complication of TACE which appears in 60-80% of cases and includes the following symptoms: fever, nausea, vomiting, abdominal pain, lack of appetite and impaired liver function. An effective approach to prevent this syndrome is necessary, especially because a combination of antipyretic agents, analgesics, antiemetics and cytoprotective drugs will accentuate the metabolic charge of the liver (Leung et al., 2001; Xu et al., 2015). Jian Pi Li Qi decoction is a frequently used prescription in TCM. A randomized, double-blind, placebo-controlled trial was performed to confirm if this therapy option is capable to prevent and treat TACE related PES, Chen et al found that Jian Pi Bu Qi improves prevention and reduction of PES syndrome. Other herbs as Qingre Jiedu Decoction associated with Western medicine has shown benefits in preventing and treating symptoms after TACE. JPLQ decoction improves the efficacy of chemotherapy and can also improve liver function and relieve the side effects brought on by TACE. (Leung et al., 2001; Xu et al., 2015) This study enrolled 150 patients receiving TACE therapy. The patients were randomly allocated to three groups: A, (subjects received neither herbal medication or placebo) containing in the end 50 patients, group B (placebo treatment group), including 40 patients and C (JPLQ decoction treatment group) with 50 individuals. The number of patients studied was lower than the number enrolled due to their consent withdrawal. The patients were admitted in the hospital for 4 days and supervised during therapy. The study compared the percentage of patients facing severe levels of the most important symptoms (pain, disturbed sleep, distress, fatigue, lack of appetite, drowsiness, dry mouth, nausea, vomiting, bloating, constipation), 1 day before TACE to 3 days after the procedure. The result was that for each symptom, the percentage was higher in the first day after TACE than in the following ones. The instrument to assess postembolization syndrome was M.D. Anderson Symptom Inventory module for use in patients with gastrointestinal cancer (MDASI-GI) (Wang et al., 2010; Xu et al., 2015). On the first day after the procedure there were no statistical differences found among the three groups of subjects. However, the patients in group C faced an attenuation of drowsiness and dry mouth on the first day and they had these symptoms significantly relieved on the second day after TACE: pain, fatigue, lack of appetite, drowsiness, dry mouth, nausea, vomiting, bloating, constipation. It is important to state that although this decoction could provide overall relief for some symptoms, it could not ameliorate severe pain, fatigue, constipation, or the lack of appetite. The post-procedure fever had a peak on the first and second day after TACE and gradually decreased on the third day. The incidence of fever was lower in group C, than in the other groups during the supervision, but the differences were not statistically significant. Regarding liver function after TACE, the results have demonstrated that there is a protective effect over liver function while using JPLQ decoction after this therapy, according to the fact that total bilirubin level (TB) in group C was lower than in group A and B, and the values of aspartate transaminase and alanine
transaminase were lower in group C than A, but like the ones expressed by the subjects in group B. The results of this trial also demonstrated that JPLQ can improve the quality of life of patients classified as moderate to advanced stages of HCC. The quality of life and the burden that is expressed by lowering it through symptoms and therapy side effects can be modified using herbal medicine (Leung et al., 2001; Xu et al., 2015; Pop et al., 2022).

Chinese rhubarb, *Moringa oleifera*, ayurvedic milk extract of Varnish tree, Black currant and an active monomer from green tea gave prophylactic actions in HCC. This effect is due to the attenuation of oxidative stress, the growth of antioxidant enzymes, lowering the lactate dehydrogenase (LDH) activity which interferes with glycolysis therefore protecting the integrity of hepatocytes membrane, having also antimutagenic effects (Thoppil et al., 2012; Joseph et al., 2013; Sadek et al., 2017; El-Sayed et al., 2018; Tang et al., 2020).

Raising sensitivity of hepatocellular carcinoma cells to chemotherapeutic agents is an important effect that increases the efficacy of this therapy (Wang et al., 2013; Nanda et al., 2017; Wu et al., 2018; Zhong et al., 2018). DHZCP is composed out of 12 plants known for their therapeutic effects in TCM. This formulation inhibits ATP energy metabolism and improves accumulation of Doxorubicin in the tumour tissue, while Ellagic acid increases the sensitivity of tumour cells for the above-mentioned chemotherapeutic drug (Wu et al., 2018; Zhong et al., 2018). Phytotherapy has impressive effects in hepatocellular carcinoma, and even in preventing the occurrence of such a pathology, although there are studies that request caution when it comes to associating phototherapeutics and biliary diseases that have a high risk of malignant degeneration (Bishayee et al., 2012; Puia et al., 2013; Sadek et al., 2017; Tang et al., 2020).

Curcumin represents a natural compound, widely investigated and with multiple therapeutic actions, such as anticancer, anti-virus, anti-arthritis, anti-amyloid, anti-oxidative and anti-inflammatory. Regarding liver diseases, curcumin inhibits HBV gene expression and replication via down-regulation of PGC-1α. Studies have demonstrated that curcumin significantly ameliorated non-alcoholic fatty liver disease, while other papers exhibit curcumin’s effects over hepatic stellate cells, inactivating them, and protection against liver steatosis and fibrosis (Farazuddin et al., 2019; White et al., 2019; Yang et al., 2022). Moreover, this compound can suppress stromal cell-derived factor-1/CXCR4 signalling, thus reducing the incidence of circulating gastric cancer cells and decreasing the risk of liver metastases. Thereby, curcumin might show advantages in the therapy of HCC. Unluckily, curcumin has a poor bioavailability and hydrophobicity, which imposes a major issue as for using it as a potent anticancer agent (Duvoix et al., 2005; Farazuddin et al., 2019; Yang et al., 2022). To avoid these problems, Farazuddin et al. (2019) developed a novel, dual-core microcell formulation of curcumin by encapsulating this element in microcells, facilitating its kinetics. Analysis revealed that these microcells helped regression of HCC and maintenance of liver tissue architecture. In addition, free curcumin had a modest effect on neoplastic suppression (Farazuddin et al., 2019; Yang et al., 2022).

Tang et al. (2020) described the effects of Epigallocatechin gallate over HCC. EGcG is the most rich and bioactive catechin found in green tea. The results of this study proved that eGeG can inhibit the proliferation of HepG2 and Huh7 cells, reduce the expression of cdc25a and elevate the expression of p21wall/cip1 in HepG2. Moreover, *in vivo* eGeG reduced tumour volume and increased survival rates of diethylnitrosamine (DEN)-induced HCC in rats. Although, the findings of Tang’s et al. (2020) are the first to show that eGeG possesses chemopreventive properties, there was no significant difference regarding this outcome between GTe (Green Tea extract) and eGeG. Previous studies have shown that GTe at an eGeG-equivalent biological concentration exhibits a stronger inhibition concerning squamous cell carcinoma and another study described that EGCG and GTE can be immune checkpoint inhibitors in lung cancer evolution. Concerning the study of Tang et al. (2020) the results have demonstrated that EGCG expresses chemopreventive properties, which can be explained by the reduction in CDC25A, as an important liver cancer gene. Moreover, EGCG and GTE reduced tumour volume, improved the survival rates of HCC subjects, and inhibited the proliferation of hepatoma cells (Huang et al., 2009; Liu et al., 2011; Rawangkan et al., 2018; Tang et al., 2020). Altogether, considering its poor stability and low bioavailability, eGeG can be used as an
association with other antitumor medication, thus having a synergistic effect of HCC prevention and treatment (Tang et al., 2020).

Conclusions

This review aimed to explore whether herbal medicine has any beneficial effects for hepatocellular carcinoma patients and if so, which are the herbs that provide such outcomes. From the reviewed articles it has been shown that herbal medicine provides a large series of benefits for patients that were diagnosed with HCC, especially concerning the following mechanisms: anti-inflammatory and anti-oxidative effects, suppressing malignant cell proliferation, inhibiting angiogenesis, stimulating apoptosis, and even sensitizing cells to chemotherapy therefore expressing outstanding results. Moreover, phytotherapy expresses favourable outcomes regarding the quality of life of patients included in advanced stages of the disease or that are experiencing side effects of certain therapies, as for patients receiving TACE. To obtain all these results, studies used either single herbs or a mixture of medicinal herbs, for example: FZJDXJ formulation, Jian Pi Li Qi decoction, Curcumin, Black currant, Chinese rhubarb, Ellagic acid, obtained from nut galls or pomegranate, or one bioactive catechin found in green tea and many more, which were successful in obtaining favourable results. All in all, regardless of the use of only one herb or a concoction, phytotherapy has proven its usefulness in hepatocellular carcinoma.

Authors’ Contributions

Conceptualization, C.P.U., R.P. and F.G.; Methodology, E.M., A.P., L.F., Validation, F.G. and N.A.H.; Resources, A.C., Ş.U., D.S. and F.Z.; Data curation, C.P.U.; Writing-original draft preparation, C.P.U. and R.P.; Writing-review and editing, C.P.U. and F.G., Visualization C.P.U., Ş.U. and F.G.; Supervision, F.G. and N.A.H. All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

This work was supported by the "Iuliu Hațieganu" University of Medicine and Pharmacy.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.
References

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License.
© Articles by the authors; Licensee UASVM and SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.