Cytotoxic activity of *Thymus capitatus* collected from Hail region in Saudi Arabia with mechanistic study via induction of caspase-dependent apoptosis and S-phase arrest

Kareem M. YOUNES\(^{1,2}\)*, Badr HUWAIMEL\(^1\), Amr S. ABOUZIED\(^{1,3}\)
Khloud O. ALRASHIDI\(^1\), Amani F. ALAWAD\(^1\), Nourah O. ALMESMAR\(^1\), Zainab M. ALRASHIDI\(^1\)

\(^1\)University of Hail, Hail, College of Pharmacy, Department of Pharmaceutical Chemistry, Hail, 81442, Saudi Arabia; k.younes@uoh.edu.sa (*corresponding author); b.huwaimel@uoh.edu.sa; as.ibrahim@uoh.edu.sa; Khloudobaidallah@gmail.com; AmaniFahadh@gmail.com; Nourah.obid@gmail.com; zainabnmns39@gmail.com;

\(^2\)Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry, Cairo, Egypt; k.younes@uoh.edu.sa (*corresponding author)

\(^3\)Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12553, Egypt; as.ibrahim@uoh.edu.sa

Abstract

Thymus capitatus is a plant grows in Mediterranean area and some Arab countries such as Saudi Arabia. It possesses numerous medicinal values. Its common name is Zaatar and it belongs to family Lamiaceae *Thymus capitatus* leaves and stem were collected from Hail region, Saudi Arabia. Then both leaves and stem were extracted with ethanol. This study was performed to evaluate cytotoxic activity of *Thymus capitatus* leaves and stem ethanolic extract in details. Doxorubicin was used as a standard and the relevant half maximal inhibitory concentration (IC\(_{50}\)) values were computed for each cell line by 3-(4,5- diemthylthiazole-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, further mechanistic study was carried out by using Apoptosis assay to explore cytotoxic activity of plant extract. Both leaves and stems extracts were screened against HepG2, A-549, HCT-116 and MCF-7 cancer cell lines. It was found that leaves’ extract shows high and moderate cytotoxic activity against both A-549 and HepG2 cancer cell lines, respectively (with IC\(_{50}\) = 13.6 and 21.5 μg/ml, respectively), while stem’s extract exerted moderate cytotoxic activity against A-549 cancer cell lines (with IC\(_{50}\) = 21.38 μg/ml). Further mechanistic study was carried out on A-549 cells by using apoptosis assay. It showed that leaves’ extract resulted in arrest of S-phase and caused apoptosis through activation of caspase-3, p53 and Bax, in addition to down regulation of Bcl-2.

Keywords: apoptosis; cytotoxic; extract; mechanism; *Thymus capitatus*
Introduction

Plants have been used as a treatment for many diseases, and became an important source of various natural compounds that possess important biological activities. Many aromatic plants possess medicinal properties and one of these plants is thymus genus that belongs to Lamiaceae family. This wild-growing plant was traditionally used in medicine for its antispasmodic, antiseptic and antimicrobial properties (Van Den Brouck and Lemli, 1981; Pannizi et al., 1993; Smith-Palmer et al., 1998; Cosentino et al., 1999).

One of the most important species is *Thymus capitatus* (Tc), which is a short herb that possess strong aromatic odor. Its tall ranges between 20–50 cm, with upright erect branches, woody, light colored young white felted, often only leafy underarm clumps (Bouyahya et al., 2020).

Tc proved to possess various biological activities, such as antioxidant (Ricci et al., 2005; Bounatirou et al., 2007; Al-Mustafa AH and Al-Thunibat, 2008), antifungal (Grayer and Harborne, 1994; Kalemba and Kunicka, 2003) and antibacterial activities against both gram positive and negative bacteria (Alves TM et al., 2000; Fan and Chen, 2001; Al-Tarawneh, 2004; Sienkiewicz et al., 2012; Inayatullah et al., 2017). In addition, *Thymus capitatus* aqueous extract revealed good activity against *Helicobacter pylori* (Tabak et al., 1996) and anthelmintic activity and can be considered as promising alternative to the commercially available anthelmintic such as albendazole (Elandalousi et al., 2013).

Few studies were performed on Tc to explore its cytotoxic activity (Kaileh et al., 2007; Dzamic et al., 2015; Yavuz et al., 2017). According to Dzamic et al., a study was carried out on Tc using tetrazolium (MTT) colorimetric assay. From this assay, it was observed that Tc possess moderate cytotoxic activity against human cell lines MRC-5, HCT 116 and HT-29 (IC50=30–150 l g m.l–1) and it caused a significant reduction of pathogen colonization in colon.

According to Yavuz et al., a study was performed on Tc essential oil extract by testing for its biological activity on neoplastic transformed human telomerase reverse transcriptase (h-TERT) immortalized mesenchymal stem cells (hMSC- telo1) and a tumorigenic cell line. It was found that there was a significant effect of the extract on h-MSC- telo1 and irradiated h-MSC- telo1 cells and it showed higher effect on cells treated with 0.5% (v/v) thyme essential oil. In addition, it was deduced that essential oil of thyme is potential for cell viability.

In addition, another study was carried out on Tc essential oil. This study proved that it has pro-apoptotic and anticancer potential on colon cancer stem cells (Yavuz et al., 2021).

Previous studies did not explore cytotoxic mechanism of action; hence, the main objective of this work is to examine the anticancer activity of ethanolic extract of *T. capitatus* leaves and stem from Hail region in Kingdom of Saudi Arabia against various cell lines with elucidating its mechanism of action.

Materials and Methods

Chemicals and solvents

All chemicals and solvents used were of high quality and analytical grade from Sigma-Aldrich (St. Louis, MO, USA)

Collection and extraction of plant material

Tc was obtained from Hail region, Saudi Arabia. The plant material was identified, air dried and then powdered. The powdered leaf and stem parts were extracted separately by repeated cold maceration with 95% ethanol. The extracts were then concentrated using vacuum to give residue of leaf extract (TCL) and stem extract (TCS).
Cancer cell lines

MCF-7 cells (human breast cancer cell line), HepG-2 cells (human Hepatocellular carcinoma), HCT-116 (Human colorectal carcinoma) and A-549 (Lung carcinoma) were obtained from Nawah Scientific Inc., (Mokatam, Cairo, Egypt). Cells were maintained in DMEM media supplemented with 100 mg/mL of streptomycin, 100 units/mL of penicillin and 10% of heat-inactivated fetal bovine serum in humidified, 5% (v/v) CO$_2$ atmosphere at 37 °C.

Cell viability assay

Aliquots of 100μL cell suspension (5x10^3 cells) were in 96-well plates and incubated in complete media for 24 h. Cells were treated with another aliquot of 100 μL media containing drugs at various concentrations. After 72 h of drug exposure, cells were fixed by replacing media with 150μL of 10% TCA and incubated at 4 °C for 1 h. The TCA solution was removed, and the cells were washed 5 times with distilled water. Then the numbers of viable cells were determined by the MTT test.

Apoptosis analysis (Annexin V/PI Assay)

Apoptotic cells were further analyzed by Annexin V/PI assay. A549 (lung carcinoma) cells were cultured to a confluent monolayer then treated with the tested sample at the IC$_{50}$ concentration as described earlier. After treatment for 72 h, A549 cells were then harvested and rinsed twice in PBS (20 min. each) followed by binding buffer. Moreover, cells were re-suspended in 100μL of kit binding buffer with the addition of 1μL of Annexin V followed by 40 min. incubation at 4 °C. Cells were then washed and re-suspended in 150μL of binding buffer with the addition of 1μL of 4′,6-diamidino-2-phenylindole, is a fluorescent stain (DAPI) (1μg/mL in phosphate buffer solution (PBS)). Then, the cells were analyzed using the flow cytometer.

Results and Discussion

Cytotoxic activity of T. capitatus ethanolic extract against cancer cell lines

T. capitatus ethanolic extract decreased cancer cell viability and exhibited selectivity for these cells

The anticancer activity of Tc has not been studied in details, hence, we tried to explore the cytotoxic potential of Tc leaves and stem ethanolic extracts and investigate its mechanism of action. The ethanolic extract of Tc was screened against various cancer cell lines such as; HepG2, A-549, HCT-116 and MCF-7. The resulting IC$_{50}$ values were summarized in Table 1.

<table>
<thead>
<tr>
<th>Table 1. IC50 values of Thymus capitatus leaves’ extract against HepG2, A-549, HCT-116 and MCF-7 cancer cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extract</td>
</tr>
<tr>
<td>Leaves</td>
</tr>
<tr>
<td>Stem</td>
</tr>
<tr>
<td>Doxorubicin</td>
</tr>
</tbody>
</table>

a IC50 values are reported as the mean (IC50±SD) of three experiments.

It was found that leaves’ extract exhibited high cytotoxic activity against both A-549 and HepG2 cancer cell lines (with IC$_{50}$ value of 13.6 and 21.5 μg/ml, respectively), while it produced mild cytotoxic activity versus HCT-116 and MCF-7 cancer cell lines (with IC$_{50}$ value of 65.4 and 58.6 μg/ml, respectively) (Figure 1). Stem extract demonstrated high and mild cytotoxic activity on both A-549 and MCF-7 cancer cell lines (with IC50 values of 21.3 and 66.5 μg/ml, respectively) (Figure 2).
Figure 1. Dose response curve indicating cytotoxic activity of *Thymus capitatus* leaves' extract on the viability of A-549, HepG2, HCT-116, MCF-7 cancer cell lines

Figure 2. Dose response curve indicating cytotoxic activity of *Thymus capitatus* stem's extract on the viability of A-549, HepG2, HCT-116 and MCF-7 cancer cell lines
Moreover, leaves’ extract showed good selectivity towards A-549 and HepG2 cancer cell lines when compared to the healthy normal MRC-5 cells. Highest selectivity was observed against A549 cells, whereby leaves’ extract was about 3 times more selective to A549 cells, Table 2. From this high selectivity, we can deduce that leaves’ extract is less toxic against normal cell. These promising results against A549 cells inspired us to elucidate the mechanism of action of Tc leaves’ extract on A549 cancer cell lines.

Table 2. IC50 values of *Thymus capitatus* leaves’ extract against MRC-5 normal cells

<table>
<thead>
<tr>
<th>Cell Lines</th>
<th>IC50 (μg/ml)</th>
<th>Selectivity Index (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRC-5</td>
<td>38.9 ± 0.45</td>
<td>2.2</td>
</tr>
<tr>
<td>HepG-2</td>
<td>2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>A-549</td>
<td></td>
<td>0.59</td>
</tr>
<tr>
<td>HCT-116</td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>MCF-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a IC50 values are reported as the mean (IC50±SD) of three experiments. b SI = (IC50 of MRC5)/(IC50 of cancer cell).

Thymus capitatus leaves’ ethanolic extract generated S-phase cell-cycle arrest in A-549 cells

As highest cytotoxic activity was observed against A-549 cancer cell lines by leaves extract, so we decided to characterize bioactivity of this extract through demonstrating its effect on the progression of cell cycle. A-549 cancer cells that was treated with leaves’ ethanolic extract indicated an increase in cells’ fraction present in S-phase (48.31% compared to 36.17% in untreated cells) (Figure 3).

Figure 3. Cell-cycle histograms showing effect of *Thymus capitatus* leaves’ ethanolic extract on cell-cycle progression in A549 cancer cells after 72 h of treatment at IC50 concentration

Furthermore, cells’ fractions in the pre-G1 phase have been increased upon treating them with leaves’ ethanolic extract (37.26% compared to 1.97% in the untreated cells). These results indicate that leaves’ ethanolic extract causes apoptosis in A-549 cells. Consequently, cell cycle analysis showed S-phase arrest and apoptosis induction in A-549 cells.

Thymus capitatus leaves’ ethanolic extract generated caspase-dependent and A-549 cells apoptosis mediated through p53

Upon cell-cycle analysis, it was found that ethanolic extract of leaves caused apoptosis in A-549 cells. Consequently, to ensure apoptosis induction by the extract, an Annexin V/propidium iodide (PI) apoptosis assay was carried out, by which A-549 cell lines were treated with leaves’ extract. The assay results indicated that leaves’ ethanolic extract caused early (1.69% compared to 0.55% in the untreated cells) and late (21.99% compared to 0.18% in the untreated cells) apoptosis, Figure 4. Also, it was observed that number of necrotic cells has been increased after that treatment (13.58% compared to 1.24% in untreated cells). Hence, we can deduce that leaves’ ethanolic extract resulted in death of cancer cells mostly via apoptosis induction with low amount of cells that undergone necrosis.

Apoptosis induction by the leaves’ ethanolic extract was confirmed via testing levels of expression for some proteins related to apoptosis, such as caspase-3 and p53. Caspases’ activation is usually considered the main mark of apoptosis. p53 is a protein responsible for tumor suppression and it affects many anti-proliferative
processes including apoptosis. This protein activation is critical for suppressing tumorigenesis (Khazaei et al., 2017). Results obtained from western blot analysis exhibited high levels of protein expression for cleaved caspase-3 upon treating A549 cancer cells with leaves’ ethanolic extract. This explains apoptosis’ induction in the treated A-549 cancer cells and matches up the Annexin V/PI assay data, Figure 5.

Furthermore, p53 expression levels were increased upon treatment with leaves’ ethanolic extract, which indicates that p53 mediates probably the induced apoptosis. Therefore, it can be conducted that Tc leaves’ extract cause cell death through activating caspase-3 and p53 in A-549 cells.

Figure 4. Apoptosis quadrant plots showing the apoptotic effects of *Thymus capitatus* leaves’ extract on A549 cancer cells upon treatment with extract at IC50 concentration for 72 h

Figure 5. Western blot analysis of cleaved caspase-3, p53, Bax and Bcl-2 in A549 cancer cells, upon treatment with *Thymus capitatus* leaves’ extract for 72 h at IC50 concentration. β-actin was used as an internal control
Bax is considered as p53 target and it is responsible for the activation of caspase during apoptosis, but the anti-apoptotic protein Bcl-2 can prohibit these Bax’s effects (Chen et al., 2008; Al-Salman et al., 2020). Hence, testing these proteins might emphasize the apoptosis mechanism activated by leaves’ extract. From western blot analysis results, it was found that leaves’ extract led to high level of Bax protein expression, while it resulted in reduction of Bcl-2 expression level in A-549 cancer cells (Figure 5), that ensures pro-apoptotic effects of leaves’ extract and matches results of other apoptosis-related assays.

Upon extraction of Tc leaves and stem with ethanol and investigating its cytotoxic activity of on different cancer cell lines, it was found that a good activity was obtained on A-549 lung cancer cells. Further apoptotic study was carried out on these cancer cells to explore extract’s mechanism of action. It was observed that leaves’ extract induces S-phase cell cycle arrest through caspase dependent apoptosis.

Conclusions

The current study investigated anticancer effect of Tc leaves and stem ethanolic extract in details. It was found that leaves’ extract has high cytotoxic activity against some cancer cell lines and mild activity against others, with highest activity observed against A-549 cancer cells. Additional studies demonstrated that leaves’ extract caused caspase-dependent; apoptosis mediated through p53 in A-549 cancer cells that led to S-phase cell cycle arrest. We expect that this study may direct others to isolate the relevant bioactive constituents with performing in vivo studies.

Authors’ Contributions

Conceptualization: KMY, BH, and ASA; Data curation: KMY and BH; Formal analysis: KMY and ASA; Funding acquisition: KMY, BH and ASA; Investigation: KMY, KOA and ZMA; Methodology: AFA and NOA; Project administration: KMY and BH; Resources: KOA, ZMA and AFA; Software: KMY and ASA; Supervision: KMY; Validation: KMY and BH; Writing original draft: KMY and ASA.

All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; Licensee UASVM and SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.

Notes:
- **Material disclaimer:** The authors are fully responsible for their work and they hold sole responsibility for the articles published in the journal.
- **Maps and affiliations:** The publisher stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.
- **Responsibilities:** The editors, editorial board and publisher do not assume any responsibility for the article’s contents and for the authors' views expressed in their contributions. The statements and opinions published represent the views of the authors or persons to whom they are credited. Publication of research information does not constitute a recommendation or endorsement of products involved.