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Abstract

Through the last century, the increased greenhouse gases emissions altered the atmosphere’s
composition and resulted to the phenomenon known as climate change. Climate change threatens the
sustainability of the agricultural sector in the Mediterranean region. Droughts and extreme heat waves will
probably become more frequent in the next few decades, thus maintaining sufficient yields in heat and drought
susceptible major crops will be challenging. In Greece, cotton is of paramount economic importance. Besides
the fact that it is regarded as the most significant fiber crop, Greece is the main cotton producer of the European
Union. The aim of the present review was to examine the environmental factors that might affect cotton
production in Greece and assess whether (or not) climate change has the potential to limit the productivity of
this crop in the near future. According to the existing literature, cotton can adapt to the changing climate.
Climate change-induced elevated CO; levels and temperatures might even benefit cotton. The mitigation of
the adverse effects of climate change is possible via the adaptation of site-specific agronomic practices. A
simplistic framework, based on the literature and the goals of the European Union, that aims to the
preservation of sufficient cotton yields in Greece is proposed in the present study.
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Introduction

Cotton is regarded as the most important fiber crop worldwide (Zaidi et al, 2018). The origin of this
crop is a complicated subject (Huckell, 1993), as the term “cotton” initially referred to four different species of
the Malvaceae family (Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and Gossypium
herbaceum) (Smith and Cothren, 1999). These species were independently domesticated thousands of years
ago in different parts of the world (Wendel and Cronn, 2003). Archeological evidence indicates that
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Gossypium barbadensc was probably domesticated in the Americas 8.000 years ago (Splitstoser ct al,, 2016).
Similarly, Gossypium herbaceum was probably domesticated in the Nile Basin round 5.000 B.C. (Mokhtar,
1990). The first woven cotton record dates back to 3.000 B.C., in the Indus valley (Gulati and Turner, 1929).
Presently, Gossypium hirsutum has prevailed as it consists 90% of the annual cotton production on a global
scale (Wendel and Cronn, 2003). In 2019, the global cotton acreage was estimated to surpass 20 million ha,
while the global cotton lint production was estimated approximately at 25 million tones (Figure 1) (OECD-
FAO, 2020).
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Figure 1. Global cotton lint production (million tones) from 1961 to 2018

Cotton had also been known to ancient Greeks. In 445 B.C., Herodotus mentioned that the Indian
troops in Xerxes’ army wore clothes made of cotton (Betts, 1994). However, it was not until the 2™ century
A.D. that cotton was cultivated in Greece (Primentas, 1960). In fact, its cultivation in Greece was firstly
reported by the ancient geographer Pausanias (120-180 A.D.), in the western part of the Peloponnese peninsula
(Primentas, 1960). Nowadays, cotton is likely the most important arable crop on a national level, as it covers
nearly 50% of the irrigated land (Gemtos et al, 2004). Following the integration of Greece in the European
Union (EU) cotton production was doubled within a decade, mainly due to the support from the Common
Agricultural Policy (CAP) of EU (Figure 2) (Tzouvelekas et al, 2001). Afterall, Greek cottonfields account for
80% of the total European cotton area. This constitutes Greece the main cotton producer of EU (EU
Commission, 2006). Domestically, it has been estimated that cotton cultivation is the main source of income
for more than 100,000 Greek households (Tzouvelekas et al, 2001). Concurrently, the production of cotton-
based textiles is included amongst the most important industrial sectors in terms of employment (Karagiannis

etal, 1997).
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Figure 2. Greek cotton lint production (million tones) from 1961 to 2018
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The cultivation of cotton

In Greece, cotton is sown from early March to mid-April. Depending on the variety and the
environmental conditions, cotton is usually harvested 170-210 days after sowing (USDA, 2020). According to
the literature, cotton development consists of 5 stages: (1) Germination and emergence, (2) seedling
establishment, (3) leaf area and canopy development, (4) flowering and boll development and (5) maturation
(Oosterhuis, 1990). Each growth stage is characterized by different physiological processes and nutrient needs
(Basal et al, 2019). Cotton thrives on warm climates as increased temperatures are vital for all the
aforementioned growth stages (Burke and Wanjura, 2010). There is an optimal temperature range for the
biochemical and metabolic activities of cotton known as the thermal kinetic window (TKW) (Burke et al,
1988). Temperatures above or below the TKW stress the crop and affect negatively both plant growth and
yield (Warner, 1993). The TKW for cotton ranges between 23.5 and 32 °C (Burke et al,, 1988). However, seed
germination occurs at lower temperatures. In fact, the minimum temperature for seed germination has been
estimated at 15 °C. At this temperature, germination occurs at a slow rate, while at 20-30 °C the germination
rate gets doubled (Reddy et al, 1991). Temperatures below 5 °C inhibit seed germination, and are detrimental
for cotton seedlings (Christiansen, 1967; Christiansen 1968). During the stage of square development,
temperatures exceeding 36 °C reduce the number of branches (Reddy et al, 1995). In arid and semi-arid
regions, irrigation is essential for cotton. Depending on the precipitations and the soil properties, cotton
requires 6-7 million liters of water per ha (Roth et al, 2013). Water scarcity may reduce the yield as it affects
leaf physiology, flower bud formation, and metabolism of sucrose (Loka et al, 2020). Crop establishment is
favored by soils with a pH ranging from 5.2 to 8.0, adequate drainage and high-water capacity (Rehman, 2019).
Fertilization is one of the main factors that enhances crop yields, crop growth and improves fiber quality
(Sawan, 2014; Constable and Bange, 2015). The flowering and maturation stages are the most demanding
stages in nutrient uptake (Oosterhuis, 2001). Apart from cultivar, tillage system, and irrigation regime, soil
fertility influences fertilization management (Francisco and Hoogerheide, 2013; Marimuthu et al, 2014;
Kulvir et al, 2015; Manjula and Chandrashekar, 2017), hence a soil analysis prior to seedbed preparation is
recommended (Joham, 1951; Sabbe and Zelinski, 1990). Overall, the total N, P, K requirements of cotton
range from 142-201 kg N ha', 19-66 kg P ha'', and 89-254 kg K ha’, respectively (Bassett et al, 1970; Halevy,
1976; Mullins and Burmester, 1990; Unruh and Silvertooth, 1996; Kadlag et al, 2016).

A simple, yet efficient method to assess crop performance is the Growing Degree Days (GDD) (Hassan
et al, 2007). GDD represent the amount of heat required by the crop in a defined time period (Cleland et al,
2007) and can be calculated based on equation 1 (Sharma cr al, 2021).

GDDs = (M) ~ Thase (1)

Where Tmax is the highest daily temperature value, Tmin is the lowest daily temperature value, and
Tbase is equal to 10°C. This index can be utilized in order to predict the number of days that it takes for the
crop to go through each phenological stage (Miller et al, 2001). On average, for a satisfactory cotton
production, 1.800-2.200 °C-d are required (Supak, 1982). In Greece, GDD requirements range from 1600 in
the northern areas to over 2900 °C-d in the southern regions (Matzarakis et al,, 2007; Tsiros et al, 2009). The
optimum environmental conditions for cotton production and its water, nutrient, and GDD requirements are
summarized in Table 1.
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Table 1. Optimum environmental conditions for cotton production and its water, nutrient, and °C-d

requirements
Optimal Fertilization
il
Growth stage ( Days ) temperature Daldy zvatcl; °C-d needs References
on aver: needs (mm
Average range (°C) el (Kgha')
Germination Well Bassett er al.,
n§ 1211 . IE 14 irrigated 1970; Halevy,
and emergence weedbed 9y 1976,
dli 15-25 31.33-86.65 Abdulmumin
Sele' }ing <25 et al,, 1990;
establishment Mullins and
55
Leaf area and Burmester,h
canopy 18-27 2,5-5 1990; Unru
devel N: 142-201 and
evelopment .
550.91- P: 19-66 Silvertooth,
Flowering and 786.35 K: 89-254 1996; Hake et
boll 75 27-32 5-7 .al., 1996;
development Linker et al,
2015; Kadlag
etal,2016;
Datta eral,
Maturation 65 18-32 - 1088.11- 2019;
1360.25
Tuttolomondo
et al.,, 2020

Climate change and cotton production

During the last century, the ever-rising emissions of greenhouse gases (GHGs) resulted in an increase of
the mean temperature on a global scale, a phenomenon known as “Global warming” (Weart, 2008). Due to the
increasing temperature droughts, wildfires, and soil degradation gradually became more frequent
(Giannakopoulos et al, 2011). These adverse effects of “Global warming” on the environment and/or the biota
are now perceived as change in climatic conditions due to the alterations of the atmosphere’s composition (UN,
1997), thus the adaptation of the term “Climate change”. Alchough researchers had been expressing their
concerns regarding climate change ever since the 1890s, it was not until the early 1970s that it was proven that
anthropogenic pollutants, such as artificial chlorofluorocarbons (CFCs) and methane (CHs), were depleting
the ozone (O;) layer, hence altering the Earth's climate ($ahin et al, 2019). By the late 1970s climate change
was regarded as the pivotal challenge of the 21% century (Sahin et al, 2019).

The interplay between climate change and agricultural productivity is complicated since certain
cultivation zones will be benefited, whereas others will be downgraded (Alcamo et al,, 2007). It should be noted
that the production of agricultural commodities is believed to be responsible for at least 20% of the annual
anthropogenic GHG emissions worldwide (Aydinalp and Cresser, 2008). Undoubtedly, climate change has
significantly affected agriculture in the European continent (Olesen and Bindi, 2004), cither positively or
negatively. In the northern parts of Europe, the increasing temperatures are expected to promote the
intensification of agriculture, encourage the introduction of new crops, and potentially increase yields (Audsley
et al., 2006; Olesen et al, 2007; Bindi and Olesen, 2011). On the contrary, climate change has evolved to a
major threat to agriculture in southern Europe, and especially in the Mediterranean Basin and in the south-
west Balkans (Olesen and Bindi, 2002; Bindi and Olesen, 2011). The adverse effects of climate change
(increasing temperatures, water scarcity) are expected to push the Mediterranean Basin to the limits of
desertification (Jacobsen, 2014). In Greece, it has been predicted that by the mid-twenty-first century (2021-

4


https://www.notulaebotanicae.ro/index.php/nbha

Engonopoulos V et al. (2021). Not Bot Horti Agrobo 49(4):12547

2050) droughts will become more frequent, the minimum average temperature will increase, and the average
precipitations will decrease (Giannakopoulos et al, 2011). This could potentially be pernicious for the
agricultural sector and the sustainability of the existing agricultural systems (Mimikou and Baltas, 2013; Gkiza
etal,2021).

The effects of climate change on cotton production are crucial in Greece due to the aforementioned
importance of this crop for the country’s economy. As mentioned above, major cotton production areas of
Greece include Aitoloakarnania, Fthiotida, Larissa, Serres and Pella. According to Giannakopoulos et al.
(2011), droughts and temperatures exceeding 35 °C, will become more frequent in these areas. Water scarcity
during the early vegetive stages and temperatures over 35 °C do not favor the canopy and root development in
cotton (Reddy et al, 1992; McMichael and Burke, 1994; Sadras and Milroy, 1996). Exposure to high
temperatures (over 32 °C) has also been proven to reduce cotton boll retention, thus reduce the yield (Zafar et
al, 2018). It is worth mentioning though, that the severity of the yield losses due to heat stress depends not
only on its intensity, but also on its duration (Zafar et al, 2018). According to Singh et al (2007), mean
temperatures that exceed the optimal temperature range even by only 1 °C might reduce cotton yield by 110
kg ha''. Morcover, cotton produces irregularly sized bolls under heat stress (Ton, 2011). The quality of the
fibers is also negatively affected by extreme temperatures, as they alter their micronair and strength values (Ton,
2011). If the heat stress is combined with droughts, the growth rate of cotton, as well as the yield, could be
further reduced (Carmo-Silva et al, 2012).

From the perspective of plant physiology, heat stress and water scarcity are known to interfere with plant
functions and physiological processes such as photosynthesis, protein synthesis, stomatal movement, and
nutrient uptake and translocation (Burke et al, 1985; Bibi et al,, 2008; Pirasteh-Anosheh et al, 2016; Shakoor
ct al, 2017). In a cellular level, heat and water stress can damage the cell membrane (Mohamed and Abdel-
Hamid, 2013), reduce the chlorophyll content (Hsiao et al,, 1976), and suppress the activity of Rubisco (Law
et al, 2001). As a response to this abiotic stress, cotton plants synthesize polypeptides known as Heat-Shock
Proteins (HSPs) (De Ronde et al, 1993) in order to recover and regulate their metabolic imbalances (Xiao and
Mascarenhas, 1985; Mohamed and Abdel-Hamid, 2013). It should be noted that HSPs are correlated with
stress tolerance (Zhang et al, 2016), and their biosynthesis in cotton is to some extent cultivar dependent (De
Ronde et al, 1993). Perhaps HSPs could be determinant for the adaptation of cotton to climate change-
induced heat stress (Ma et al,, 2016)

Although, based on the above, climate change seems to threaten cotton production in Greece, the
literature provides contradictory results. For instance, the elevated atmospheric CO, concentration that has
been reported during the 21" century might be beneficial for cotton, despite its contribution to the climate
change. According to the findings of Radin et al (1987), an increase of the atmospheric CO, concentration by
a two-times-fold doubles the yield. Reddy et al. (1998) suggested that, under an irrigation regime that provides
sufficient water, a similar increase of CO, concentration almost doubles the photosynthetic rate of cotton
plants. Under water stress, the elevated CO; levels can partially compensate for the water scarcity (Chaves and
Pereira, 1992; Kimball et al,, 1994), though others support that increased CO levels benefit cotton only under
optimal temperatures and soil moisture conditions (Broughton et al, 2017). The enhanced performance of
cotton in CO; enrichened environments could be attributed to the fact that cotton isa C3 plant. Several studies
indicate that C3 plants are favored by elevated atmospheric CO; since it promotes photosynthesis and
ammonium (NH4") utilization (Hamim, 2005; Wang et al,, 2020). Moreover, the observed heat and water
stress-compensating effect of increased CO; concentrations is probably associated with stomatal movement.
According to several studies, high CO, levels stimulate stomatal closure, thus reducing transpiration and
increasing evapotranspiration efficiency (Mauney et al, 1994; Hileman et al, 1994; Ko and Piccinni, 2009).

Besides the adverse, heat stress-inducing extreme temperatures (>32 °C), the higher average
temperatures could be beneficial for the cotton production in Greece. Occurrence of cold-stress events during
the early growth stages of the crop might be significantly reduced (Giannakopoulos et al,, 2011). By 2050, the
growing degree days per cultivation season in Greece are expected to increase at least by 150, depending on the


https://www.notulaebotanicae.ro/index.php/nbha

Engonopoulos V et al. (2021). Not Bot Horti Agrobo 49(4):12547

arca (Paparrizos and Matzarakis, 2016; Paparrizos and Matzarakis, 2017). According to Kukal and Irmak
(2018), GDDs and yields are positively correlated, thus cotton yields might increase. Higher mean
temperatures, within the optimal range for plant development, could increase their growth rate and, as a result,
shorten the crop cycle (Reddy et al, 1996). According to Voloudakis et al. (2015), this would also increase the
yield significantly. In fact, several prediction models suggest that climate change might have a positive impact
on cotton yields in Greece (Voloudakis et al, 2015; Voloudakis et al,, 2018).

Future implications

An important aspect that should be regarded, in order to predict (at least to some extent) the future of
cotton production in Greece, are the goals set by the EU and the United Nations (UN). The EU Green Deal,
the Common Agricultural Policy of EU, as well as the Sustainable Development Goals (SDGs) of the UN, all
aim to mitigate the adverse effects of climate change (Zhenmin and Espinosa, 2019; EU Commission, 2020a;
EU Commission, 2021). For the implementation of these goals, a series of actions have been proposed in order
to reduce GHGs emissions (Zhenmin and Espinosa, 2019; EU Commission, 2020a; EU Commission, 2021).
Amongst these actions, the reduction of chemical inputs (fertilizers, pesticides) by at least 50% by 2030 was
agreed (EU Commission, 2020b). As cotton production in Greece relies heavily on the application of chemical
fertilizers (Setatou and Simonis, 1995), the yields could be negatively affected.

The need for a strategy regarding Greek cotton production in the “era of climate change” becomes
evident. Such a strategy could be based on three axes: initially, the compliance with the goals of EU and UN is
imperative. In the case of chemical fertilizers, their consumption in Greece has been indeed reduced by 25%
during the last decade (Giannakopoulou et al,, 2020), however the literature regarding the potential reduction
of applied fertilization in cotton is poor, if not non-existent. Provided that a further reduction of chemical
fertilizers is required, replacing conventional fertilizers with slow-release ones (SRFs) is a potential solution.
Slow-release fertilizers utilize urease or nitrification inhibitors and release their nutrients in a slower rate
(Folina et al, 2021). The application of SRFs has been found to increase cotton yield (Giannoulis et al, 2020),
and to be equally efficient compared to the application of conventional fertilization even at rates reduced by
40% (Oosterhuis and Howard, 2008).

Secondly, the increased mean temperature (within the optimal range for plant growth) and CO; levels
could be regarded as short-term benefits of the climate change. Afterall, these two environmental parameters
influence the photosynthetic rates of the plant and thus, they could positively affect plant canopy and yield
(Reddy etal, 1996). Moreover, it has been estimated that the clevated mean temperature will prolong growing
seasons (Giannakopoulos et al, 2011). Prolongation of the growing season even by one day could increase yields
by 14-34 kg ha! (Bange and Milroy, 2004). Concurrently, the GDDs will rise in several parts of the country,
facilitating its introduction to new areas (Paparrizos and Matzarakis, 2016; Paparrizos and Matzarakis, 2017).

Finally, the mitigation of the adverse effects of climate change, or rather the adaprtation of cotton
production under climate change, should be focused on agronomic practices and genetic engineering (Zafar et
al,2018). Genetic engineering is a useful tool that can improve existing varieties via hybridization. For instance,
breeding programs could utilize wild species with drought and heat resistance traits (Zafar et al, 2018).
However, such programs usually are too costly and time-consuming (Katageri et al, 2020). On the contrary,
the adoption of suitable, site-specific agronomic practices might be a more immediate alternative. Prolonged
and intense droughts could be managed via deficit-irrigation regimes, or the application of zeolite (or synthetic
super absorbent polymers), as these practices have been proven to improve water-use efficiency (Papastylianou
and Argyrokastritis, 2014; Fallahi et al, 2015). The latter has also been found to increase nutrient uptake and
efficiency (Ahmed et al, 2010). Alterations in row-spacing could also tackle water stress (Zafar et al, 2018).
Similarly, extremely high temperatures could be avoided by altering the sowing dates (Zafar et al, 2018).
Finally, the literature indicates that foliar application of organic compounds such as ascorbic acid, ascobine,
and salicylic acid can alleviate heat stress in cotton (Omar et al, 2018).
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Figure 3. The three axes of modern Greek cotton production

Conclusions

Even though climate change threatens agriculture, the production of cotton in Greece will be probably
unaffected by it. According to several prediction models, Greece will maintain or even increase its overall cotton
production through the next decade. The elevated atmospheric CO; levels and the increased temperatures
might have a positive impact on the yields. On the contrary, droughts and prolonged heat stress will negatively
affect this crop. If necessary, climate change mitigation strategies can provide means to dilute the impact of heat
and water stress on cotton production. Further rescarch should be conducted in order to optimize these
strategies.
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