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AbstractAbstractAbstractAbstract    
    
Paclobutrazol (PBZ) is a member of plant growth retardants, commonly applied for growth regulation, 

yield improvement, and biotic and abiotic stress alleviation. However, the effects of PBZ on turmeric 
(Curcuma longa L.; Zingiberaceae), a rhizomatous herb, have not been well established. The objective of this 
investigation was to gain a better understanding of the effect of PBZ on two different varieties of turmeric 
plants, ‘Surat Thani’ (‘URT’; high curcuminoids >5% w/w) and ‘Pichit’ (‘PJT’; low curcuminoids <3% w/w). 
Pseudostem height of cv. ‘PJT’ treated by 340 µM PBZ was significantly decreased by 14.82% over control, 
whereas it was unchanged in cv. ‘URT’. Interestingly, leaf greenness (SPAD value), maximum quantum yield 
of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in cv. ‘PJT’ treated by 340 µM PBZ were significantly elevated 
by 1.47, 1.28 and 1.23 folds, over control respectively. Net photosynthetic rate (Pn) in cv. ‘PJT’ declined by 
38.58% (340 µM PBZ) over control, as a result of low levels of total soluble sugars (TSS; 127.8 mg g−1 DW) in 
turmeric rhizome. A positive relation between photosynthetic abilities and aerial fresh weight was 
demonstrated. In addition, a negative relationship between TSS and total curcuminoids was evidently found 
(R2 = 0.4524). Curcuminoids yield in turmeric rhizomes significantly dropped, depending on the degree of 
exogenous foliar PBZ applications. In summary, cv. PJT was found to be very sensitive to PBZ application, 
whereas rhizome yield and growth traits and high amount of curcuminoids were retained in cv. ‘URT’. Plant 
growth retention in turmeric cv. ‘URT’ using 170 mM PBZ foliar spray without negative effects on rhizome 
biomass and total curcuminoids content was demonstrated. 
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IntroductionIntroductionIntroductionIntroduction    
 
Turmeric (Curcuma longa L.; Zingeberaceae) is a rhizomatous herb, which has been widely cultivated 

as a spice in tropical regions, especially in India (Akram et al., 2010). Turmeric plant contains curcuminoids 
and has been used as food ingredient, edible dye and traditional medicine (Sharma et al., 2005; Anandaraj and 
Sudharshan, 2011). There are three major kinds of curcuminoids, namely curcumin (CUR), 
demethoxycurcumin (DEM) and bis-demethoxycurcumin (BIS) (Akram et al., 2010; Li et al., 2011). Of these, 
CUR is the dominant and biologically important active constituent (Prasad et al., 2014; Kocaadam and Şanlier, 
2017) with high potent antioxidant, anti-inflammatory and cancer preventive properties (Frank et al., 2003; 
Akram et al., 2010; Gupta et al., 2012, 2013). An increasing demand of turmeric varieties for the food, 
pharmaceutical, and cosmetic industries has been reported due to its medicinal properties. A novel cultivation 
system to yield high curcuminoids and high biomass of rhizomes in turmeric plant still needed to be discovered 
(Deepa et al., 2017; Sandeep et al., 2017). In India, high yielding turmeric cultivars (HYTCs), namely ‘Palam 
Pitamber’ (32.94 t ha−1) and ‘Palam Lalima’ (32.35 t ha−1) are cultivated as elite varieties, with high rhizome 
productivity, profitability, and curcuminoids yield (Choudhary and Rahi, 2018). However, in Thailand has 
only two cultivars, namely ‘Trang 1’ and ‘Trang 2’, have been approved by the department of Agriculture, but 
they have low rhizome productivity and curcuminoids content. Recently, turmeric cv. ‘URT’ with high 
curcuminoids (>5% w/w) has been reported (Chintakovid et al., 2021 a, b). In addition, low curcuminoids 
genotype, cv. PJT have been selected from the turmeric plant characterization to play as negative check. 

Paclobutrazol [PBZ; (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-
ol] is a plant growth retardant, which affects the growth rate in higher plants, especially potted ornamental 
species (Whipker and Hammer, 1997; Krung et al., 2007; Carver et al., 2014). It also regulates carbohydrate 
metabolism to control off-season flowering and fruit set in several fruit species (Yeshitela et al., 2004; Arzani et 
al., 2009; Brar, 2010; Martínez-Fuentes et al., 2013; Upreti et al., 2014) and lignin synthesis and produce a 
strong stalk against lodging in rice (Sinniah et al., 2012), maize (Kamran et al., 2018a) and wheat (Kamran et 
al., 2018b). Physiological adapted strategies, yield attributes and qualities in PBZ treated plants in various 
microclimate environments have been validated in many plant species (Meena et al., 2014; Tekalign and 
Hammes, 2005a, b; Kamran et al., 2018c). Moreover, it has been widely applied to alleviate abiotic stresses 
including drought, salinity and extreme temperature (Soumya et al., 2017; Chandra and Roychoudhury, 2020). 
In C. alismatifolia, PBZ application has been reported to enhance off-season production (Boontiang et al., 
2019) and drought tolerant abilities (Jungklang et al., 2017). C. gracillima and C. thorelii and C. alismatifolia 
were found to be most sensitive (Sarmiento and Kuehny, 2003). However, the basic information of foliar 
application and optimum doses of PBZ in C. longa is still lacking. In addition, pseudostem (up to 1 m) and 
plant canopy (8-12 leaves with up to 1 m long) of turmeric require a long distance between row and plant 
spacing in agricultural practices (Ravindran 2007). We hypothesized that PBZ-treatment can retard the 
pseudostem height and plant canopy in turmeric without having negative effects on rhizome yield traits and 
total curcuminoids in rhizomes. Compact canopy control using PBZ is an alternative way to make a high 
density of turmeric plant production in SMART greenhouse. The rationale of this study indicating that we 
used PBZ to investigate whether it can regulate the curcuminoid content and, thus, morpho-physiological 
traits. The objective of present study was to investigate the regulation of morphological growth characters, 
physiological changes, rhizome yield traits, and total curcuminoids in C. longa using PBZ foliar spray under 
controlled greenhouse conditions. 
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Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Plant materials and PBZ treatments 
Master stock of turmeric rhizomes, cvs. ‘Surat Thani’ (‘URT’; high curcuminoids) and ‘Pichit’ (‘PJT’; 

low curcuminoids) were procured from Department of Agriculture, Ministry of Agriculture and Cooperative, 
Thailand. The rhizomes were incubated into peat moss until two true leaves were emerged and then individual 
plantlet was transferred into plastic bags (15 × 30 cm) containing 10 kg garden soil (EC=2.687 dS m−1; 
pH=5.5; organic matter=10.36%; total N=0.17%; total P=0.07%; total K=1.19%) under greenhouse 
conditions (32±2 °C Day/28±2 °C night air temperature and 85±5% relative humidity) for 5 months. Slow 
releasing fertilization (Osmocoat; 13:13:13; N:P:K) was applied twice to each plant, i) 10 g bag-1 before 
planting into soil substrate, and ii) 10 g bag−1 at four months after transplanting (Akamine et al., 2007). 
Uniform plant materials were selected for exogenous application of different concentrations of PBZ, i.e., 0 
(control), 170 and 340 µM (100 mL plant−1 together with 0.25 mL 9.6% w/v linear alkalbenzene sulfonate, 
6.4% w/v sodium laurylether sulfate and 0.125% w/v alkyl polygucoside) from four and five months-old 
seedlings, which were harvested after eight months. Two times of exogenous PBZ foliar-spray at 4 and 5 months 
after planting were practically applied and then cultivated until harvesting period at 8 months. At harvesting 
period, overall growth performance, leaf greenness (SPAD), chlorophyll fluorescence, net photosynthetic rate, 
and soluble sugars were measured in the leaf tissues as well as total curcuminoids and total soluble sugars in 
rhizomes were assayed. 

 
Growth performances 
Pseudostem height, leaf length, leaf width, pseudostem fresh weight, pseudostem dry weight, leaf area, 

root length, number of roots, root fresh weight and root dry weight were measured as growth parameters. Leaf 
area was measured by Leaf Area Meter (Model CL-203, CID® Inc, WA, USA). In addition, rhizome yield traits 
like rhizome width, fresh and dry weight of rhizomes were measured. 

 
Physiological measurements 
Leaf greenness (SPAD value) in the second fully expanded leaf from the shoot tip of each treatment was 

measured using Chlorophyll Meter (SPAD-520 Plus, Konica Minolta, Osaka, Japan) according to Hossain et 
al. (2000). 

Chlorophyll fluorescence emission was measured from the adaxial surface of second fully expanded leaf 
from the shoot tip using a fluorescence monitoring system (model FMS 2; Hansatech Instruments Ltd., 
Norfolk, UK) in the pulse amplitude modulation mode (Loggini et al., 1999). A leaf kept in dark for 30 min 
was initially exposed to the modulated measuring beam of far-red light (LED source) with typical peak at 
wavelength 735 nm. Initial fluorescence (F0) and maximum (Fm) fluorescence yields were measured under 
weakly modulated red light (<0.5 µmol m−2 s−1) with 1.6 s pulses and then exposed to saturating light (>1,500 
µmol m−2 s−1 PPFD) and calculated using FMS software for Windows®. The variable fluorescence yield (Fv) was 
calculated using the equation: Fv=Fm–F0. The ratio of variable to maximum fluorescence (Fv/Fm) was calculated 
as the maximum quantum yield of PSII photochemistry. The photon yield of PSII (ΦPSII) in the light was 
calculated as: ΦPSII = (Fm'-F)/Fm' after 45 s of illumination, when steady state was achieved (Maxwell and 
Johnson, 2000). 

Net photosynthetic rate (Pn; µmol m−2 s−1), stomatal conductance (gs; mmol CO2 m−2 s−1), transpiration 
rate (E; mol m−2 s−1) and a ratio of Pn/E (water use efficiency, WUE) in second fully expanded leaf were 
measured using a portable photosynthesis system fitted with an infrared gas analyzer (LI 6400, LI-COR, 
Lincoln, NE, USA), according to the method of Cha-um et al. (2007). The E and gs were measured 
continuously by monitoring the H2O content of air entering and exiting the IRGA head space chamber. The 
flow rate of air in sample line and micro-chamber temperature was set at 500 µmol m−2 s−1 and 27±1 °C block 
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temperature, respectively. The light intensity was adjusted to 1,000 µmol m−2 s−1 PPFD using 6400-02B red-
blue LED light source. 

 
Biochemical assays 
For the estimation of curcumin content, the dry-harvested rhizomes were cleaned thoroughly with tap 

water, cut into small pieces and allowed to dry in hot air oven at 50 °C for 96h. The pieces are then powdered 
by using Moulinex™ Blender (Groupe SEB, France). Fifty milligrams of dried powder were transferred into vial 
and then 5 mL of methanol were added for extraction. The mixture was vortexed vigorously, sonicated for 30 
min and then the supernatant was filtered through Whatman® No.1. The extracted solution was dried and 
stored in the deep freezer (-20 °C) prior to curcuminoids assay. For curcuminoids analysis, dried extracted 
samples were suspended in 1 mL methanol and then filtrated through 0.45 μm pore size (MilliporeTM nylon 
filter). Ten microliters of sample were injected into injection loop and analyzed by HPLC (Waters Associates, 
Milford, MA, USA) equipped with Water 2998 photodiode array detector at 425 nm. BIS, DEM and CUR 
were separated using C18 (VertisepTM UPS) column incubating under 25 °C. The mobile phase consisted of 
acetonitrile (100% HPLC grade) and acetic acid (0.25%, v/v). The elution was carried out with a gradient set 
with a flow rate of 0.8 mL min−1. The solvent gradient was: 50% acetonitrile up to 8 min, 50 to 40% acetonitrile 
from 8 to 10 min, 40% acetonitrile constant from 10 to 15 min, and 40 to 50% acetonitrile from 15 to 16 min 
(Pothitirat and Grisanapan, 2007). 

Soluble sugars (sucrose, glucose, and fructose) in the leaf tissues (second fully expanded leaf from the 
shoot tip) and primary rhizome were assayed following the method of Karkacier et al. (2003). In brief, fifty-
milligrams of freeze-dried sample were ground in a mortar with liquid nitrogen. One mL of nanopure water 
was added and centrifuged at 12,000 ×g for 15 min. The supernatant was collected and filtered through a 0.45 
µm membrane filter (VertiPure™, Vertical®, Vertical Chromatography Co., Ltd., Thailand). Ten microliters of 
the filtrate were injected into a Waters HPLC equipped with a MetaCarb 87C column and a guard column 
(Agilent Technologies, Santa Clara, CA, USA). Deionized water was used as the mobile phase at a flow rate of 
0.5 mL min−1. The online detection was performed using a Waters 410 differential refractometer detector and 
the data was analysed by Empower® software. Sucrose, glucose, and fructose (Fluka, USA) were used as the 
standards. 

 
Statistical analysis 
The experiment was designed as 3 × 2 factorials in a Completely Randomized Design (CRD) with 6 

replications (n = 6) in each treatment. Analysis of variance (ANOVA) in each parameter was analysed using 
SPSS software. The mean values were compared using Tukey’s HSD and analysed by SPSS software version 
11.5. Pearson’s correlation between SPAD and Fv/Fm, Fv/Fm and ΦPSII, Pn and pseudostem dry weight, TSS in 
rhizomes and total curcuminoids was calculated. 

 
 
ResultsResultsResultsResults    
 
Growth performances 
Overall morphological characteristics were studied in both aerial and underground parts of two turmeric 

genotypes sprayed with different PBZ treatments (Figure 1). Pseudostem height of cv. ‘PJT’ (54.3 cm) without 
PBZ treatment was higher than cv. ‘URT’ (37.0 cm) by 1.47 folds. Pseudostem height in ‘PJT’ was sensitive to 
340 µM PBZ treatment, and significantly retarded by 14.73% over control, whereas it was unchanged in ‘URT’ 
(Figure 2a). Retardation of psudostem height in recent study depended on the turmeric genotypes and the 
degree of PBZ treatments. In aerial part, pseudostem fresh weight (STFW), pseudostem dry weight (STDW), 
leaf length (LL) and leaf width (LW) in ‘PJT’ without PBZ treatment were higher than in ‘URT’ by 1.67, 1.81, 
1.26 and 1.39 folds, respectively (Table 1). Under 340 µM PBZ treatment, STFW (121.1 g) and STDW (11.4 
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g) in ‘URT’ turmeric plants were lower than in ‘PJT’ by 45.10% and 47.71%, respectively. Under without PBZ 
condition, LL and LW in ‘PJT’ were greater than in ‘URT’. Additionally, leaf area (LA) in both genotypes were 
unchanged (Table 1). Moreover, LL, LW and leaf area (LA) in both genotypes were unchanged (Table 1). In 
underground part, root fresh weight (RTFW), root dry weight (RTDW), root length (RTL), number of roots 
(NRT) and rhizome width (RhW) in ‘PJT’ was greater than in ‘URT’ by 1.63, 1.82, 1.37, 1.68 and 1.2 folds, 
respectively (Table 2). Under 340 µM PBZ treatment, RTFW, RTDW, RTL and NRT in ‘URT’ were 
significantly decreased by 38.68%, 47.34%, 32.73% and 54.43% over ‘PJT’, respectively (Table 2). In addition, 
RTFW, RhW and rhizome fresh weight (RhFW) in ‘PJT’ plants treated with 340 µM PBZ were significantly 
declined by 34.16%, 26.55% and 55.96% over control (0 µM PBZ), respectively. Reduction in RhW and RhFW 
parameters was dependent on exogenous PBZ foliar concentrations (Table 2). 

 

 
Figure 1.Figure 1.Figure 1.Figure 1. Morphological characteristics of two turmeric varieties, URT and PJT, upon exogenous foliar 
application by 0 (control), 170 and 340 µM PBZ at vegetative stage prior to harvest at maturity (8 months-
old) under the greenhouse conditions 
 
Table 1.Table 1.Table 1.Table 1. Pseudostem fresh weight (STFW), pseudostem dry weight (STDW), leaf length (LL), leaf width 
(LW) and leaf area (LA) of two turmeric cultivars, URT and PJT, upon exogenous foliar application by 0 
(control) 170 and 340 µM PBZ at vegetative stage prior to harvest at maturity (8 months-old) in the 
greenhouse conditions. Data presented as mean ± SE (n = 6) 

VarietyVarietyVarietyVariety    
PBZ PBZ PBZ PBZ 
((((µµµµM)M)M)M)    

STFWSTFWSTFWSTFW    
(g)(g)(g)(g)    

STDWSTDWSTDWSTDW    
(g)(g)(g)(g)    

LLLLLLLL    
(cm)(cm)(cm)(cm)    

LWLWLWLW    
(cm)(cm)(cm)(cm)    

LALALALA    
(cm(cm(cm(cm2222))))    

URTURTURTURT    
0000    171.6±18.1bc 14.8±1.6bc 40.3±1.7b 8.7±1.0b 2300±253ab 

170170170170    164.8±25.9bc 15.5±2.4bc 45.2±1.9ab 9.6±0.5ab 2200±409ab 
340340340340    121.1±13.4c 11.4±1.2c 44.1±2.8ab 10.7±0.5ab 1507±198b 

PJTPJTPJTPJT    
0000    287.1±23.3a 26.8±2.5a 50.8±2.6a 12.1±0.6a 2773±273ab 

170170170170    295.7±22.5a 27.4±2.2a 47.1±2.2ab 11.4±0.6ab 3486±422a 
340340340340    220.6±14.9ab 21.8±1.7ab 46.7±2.8ab 13.0±0.4a 2831±315ab 

Significant levelSignificant levelSignificant levelSignificant level         
Var  ** ** * ** ** 
PBZ  ** * ns * ns 

Var × PBZ  ns ns ns ns ns 
ns, * and ** represent non-significant, significant (p ≤ 0.05) and highly significant (p ≤ 0.01), respectively. Different 
letters in each column represent significant difference at p ≤ 0.05 according to Tukey’s HSD test. 
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Figure 2.Figure 2.Figure 2.Figure 2. Pseudostem height (a), leaf greenness (SPAD; b), maximum quantum yield of PSII (Fv/Fm; c) and 
photon yield of PSII (ΦPSII; d) of two turmeric varieties, URT and PJT, upon exogenous foliar application 
by 0 (control), 170 and 340 µM PBZ at vegetative stage prior to harvest at maturity (8 months-old) under 
the greenhouse conditions 
Data presented as mean ± SE (n = 6). Different letters along each bar represent significant difference according to 
Tukey’s HSD test at p ≤ 0.05. 

 
Table 2.Table 2.Table 2.Table 2. Root fresh weight (RTFW), root dry weight (RTDW), root length (RTL), number of roots 
(NRT), rhizome width (RhW) and rhizome fresh weight (RhFW) of two turmeric cultivars, URT and 
PJT, upon exogenous foliar application by 0 (control), 170 and 340 µM PBZ at vegetative stage prior to 
harvest at maturity (8 months-old) in the greenhouse conditions 

VarietyVarietyVarietyVariety    
PBZ PBZ PBZ PBZ 
((((µµµµM)M)M)M)    

RTFWRTFWRTFWRTFW    
(g)(g)(g)(g)    

RTDWRTDWRTDWRTDW    
(g)(g)(g)(g)    

RTLRTLRTLRTL    
(cm)(cm)(cm)(cm)    

NRTNRTNRTNRT    
RhWRhWRhWRhW    
(cm)(cm)(cm)(cm)    

RhFWRhFWRhFWRhFW    
(g)(g)(g)(g)    

URTURTURTURT    
0000    39.5±2.6bc 2.74±0.21cd 37.2±0.6b 50±4b 14.7±0.6b 208.8±14.6ab 

170170170170    34.7±4.4bc 2.97±0.51cd 42.2±2.6ab 44±6b 14.3±1.0b 181.9±18.4b 
340340340340    26.0±3.4c 1.98±0.17d 37.2±3.1b 36±6b 14.2±0.9b 159.1±12.4bc 

PJTPJTPJTPJT    
0000    64.4±4.6a 4.98±0.33ab 51.0±3.9a 84±13a 17.7±0.7a 287.0±11.2a 

170170170170    62.5±3.5a 5.67±0.51a 42.8±5.1ab 100±7a 14.8±0.5b 179.0±19.4b 
340340340340    42.4±2.4b 3.76±0.21bc 55.3±8.6a 79±5a 13.0±0.4b 126.4±9.7c 

Significant levelSignificant levelSignificant levelSignificant level          
Var  ** ** ** ** ns ** 
PBZ  ** ** ns ns ** ** 

Var × PBZ  ns ns ns ns * ns 

Data presented as mean ± SE (n = 6). 
ns, * and ** represent non-significant, significant (p ≤ 0.05) and highly significant (p ≤ 0.01), respectively. Different 
letters in each column represent significant difference at p ≤ 0.05 according to Tukey’s HSD test. 

 
Physiological changes 
Leaf greenness (SPAD value) in 340 µM PBZ treated turmeric plants cvs. ‘URT’ and ‘PJT’ was 

significantly increased by 1.26 and 1.48 folds over control, respectively (Figure 2b). In ‘PJT’, leaf greenness in 
170 µM PBZ treated plants was 29.70 SPAD unit, which was 1.36 folds greater over control (Figure 2b). 
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Interestingly, the maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in ‘PJT’ sprayed 
with 340 µM PBZ were promoted by 1.28 and 1.23 folds over control, respectively (Figure 2c-d). In ‘URT’, 
only ΦPSII was up-regulated by 340 µM PBZ (1.15 folds over control) (Figure 2c-d). Positive relationships 
between leaf greenness and Fv/Fm (Figure 3a; R2 = 0.5912) and Fv/Fm and ΦPSII (Figure 3b; R2 = 0.8361) were 
demonstrated. Photosynthetic abilities of the light reaction in ‘PJT’ treated with PBZ was significantly 
improved. In contrast, net photosynthetic rate (Pn), in ‘PJT’ sprayed with 340 µM PBZ was significantly 
declined by 38.58% over control, while it was unaffected in ‘URT’ (Figure 3c). A positive relationship between 
Pn and STDW was found (Figure 3d; R2 = 0.4559). Transpiration rate (E) and stomatal conductance (gs) in 
‘PJT’ without PBZ treatment were greater than those in ‘URT’ by 1.99 and 1.87 folds, respectively (Figure 4a-
b). In PBZ treated plantlets of ‘PJT’, E was significantly dropped by 61.63% (170 µM PBZ) and 74.90% (340 
µM PBZ) over control (Figure 4a). Similarly, gs was decreased by 61.63% (170 µM PBZ) and 75.35% (340 µM 
PBZ) over control (Figure 4b). A positive relation between gs and E was observed (Figure 4c; R2 = 0.9955). 
Water use efficiency (Pn/E) in ‘PJT’ treated with 170 and 340 µM PBZ was significantly improved by 2.13 and 
2.45 folds over control (without PBZ), respectively, whereas it was unchanged in ‘URT’ (Figure 4d). 

 

 
Figure 3.Figure 3.Figure 3.Figure 3. Relationships between SPAD and Fv/Fm (a), Fv/Fm and ΦPSII (b), net photosynthetic rate (Pn, c) 
and relationship between Pn and pseudostem dry weight (d) of two turmeric varieties, URT and PJT, upon 
exogenous foliar application by 0 (control), 170 and 340 µM PBZ at vegetative stage prior to harvest at 
maturity (8 months-old) under the greenhouse conditions  
Data presented as mean ± SE (n = 6). Different letters along each bar represent significant difference according to 
Tukey’s HSD test at p ≤ 0.05. 
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Figure 4.Figure 4.Figure 4.Figure 4. Transpiration rate, E (a), stomatal conductance, gs (b), relationship between E and gs (c) and 
water use efficiency, Pn/E (d) of two turmeric varieties, URT and PJT, upon exogenous foliar application 
by 0 (control), 170 and 340 µM PBZ at vegetative stage prior to harvest at maturity (8 months-old) under 
the greenhouse conditions. Data presented as mean ± SE (n = 6). Different letters along each bar represent 
significant difference according to Tukey’s HSD test at p ≤ 0.05. 
 
Biochemical changes 
Sucrose in the leaf tissues of ‘URT’ treated with 340 µM PBZ was significantly decreased by 34.76% over 

control in contrast to glucose, which was increased by 1.25 folds over control (Table 3). In ‘PJT’, glucose and 
fructose in plantlets treated with 340 µM PBZ were increased by 1.29 and 1.41 folds over control and the 
maximum value of sucrose was found to be 42.7 mg g-1 DW (1.18 folds over control) in 170 µM PBZ treated 
plants (Table 3). In rhizome, sucrose>fructose>glucose was evidently observed, especially in cv. ‘URT’. Sucrose 
in ‘PJT’ rhizome (140.9 mg g-1 DW) was greater compared with ‘URT’ (55.7 mg g-1 DW), whereas fructose 
level in ‘PJT’ rhizome was lower by 45.90% over ‘URT’ (Table 3). In ‘PJT’ rhizome of 340 µM PBZ treated 
plants, sucrose and glucose significantly declined by 46.84% and 50.80% over control, respectively (Table 3). 
Upon 340 µM PBZ exogenous spray, total soluble sugars (TSS) in ‘PJT’ were increased by 1.18 folds over ‘URT’ 
(Figure 5a). A positive relation between TSS and total curcuminoids was demonstrated in rhizome (Figure 5b; 
R2 = 0.4524). 

 
 
 
 
 
 
 
 
 



Chungloo D et al. (2021). Not Bot Horti Agrobo 49(3):12445 

 

9 
 

 

 

 

 

 

Table 3.Table 3.Table 3.Table 3. Sucrose (Suc; mg g−1 DW), glucose (Gluc; mg g−1 DW) and fructose (Fruc; mg g−1 DW) in the 
leaf and rhizome tissues of two turmeric (Curcuma longa) varieties, URT and PJT, upon exogenous foliar 
application by 0 (control), 170 and 340 µM PBZ at vegetative stage prior to harvest at maturity (8 months-
old) in the greenhouse conditions 

VarietyVarietyVarietyVariety    
PBZPBZPBZPBZ    LeafLeafLeafLeaf    RhizomeRhizomeRhizomeRhizome    
((((µµµµM)M)M)M)    SucSucSucSuc    GlucGlucGlucGluc    FrucFrucFrucFruc    SucSucSucSuc    GlucGlucGlucGluc    FrucFrucFrucFruc    

URTURTURTURT    
0000    32.8±5.3b 17.8±0.8b 28.5±1.1ab 55.7±6.8c 23.3±1.5ab 39.6±3.1a 

170170170170    32.3±5.8b 18.6±1.3b 25.7±1.4ab 56.3±4.0c 22.1±3.7ab 36.4±4.2a 
340340340340    21.4±4.4c 22.3±1.9a 29.9±1.7a 73.3±6.4bc 26.9±4.0a 27.6±5.7ab 

PJTPJTPJTPJT    
0000    36.1±6.3b 18.2±3.4b 21.0±3.3b 140.9±10.0a 18.7±4.8b 19.8±6.1bc 

170170170170    42.7±5.5a 17.7±1.0b 23.9±1.0ab 100.7±9.0b 16.1±0.7b 30.1±6.4ab 
340340340340    33.9±2.8b 23.4±1.1a 29.7±1.9a 74.9±16.7bc 9.2±1.4c 13.7±2.2c 

Significant levelSignificant levelSignificant levelSignificant level          
Var  * ns * ** ** ** 
PBZ  ns * * * ** * 

Var × 
PBZ 

 ns ns ns ** * ns 

Data presented as mean ± SE (n = 6). 
ns, * and ** represent non-significant, significant (p ≤ 0.05) and highly significant (p ≤ 0.01), respectively. Different 
letters in each column represent significant difference at p ≤ 0.05 according to Tukey’s HSD test. 

 

 
Figure 5.Figure 5.Figure 5.Figure 5. Total soluble sugar (TSS) in the leaf tissues (a), relationship between TSS in rhizome tissues and 
total curcuminoids (b), total curcuminoids (c) and curcuminoids yield (d) of two turmeric varieties, URT 
and PJT, upon exogenous foliar application by 0 (control), 170 and 340 µM PBZ at vegetative stage prior 
to harvest at maturity (8 months-old) in the greenhouse conditions 
Data presented as mean ± SE (n = 6). Different letters along each bar represent significant difference according to 
Tukey’s HSD test at p ≤ 0.05. 
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Total curcuminoid content (mg g−1 DW) and curcuminoids yield (mg plant−1) in ‘URT’ were greater by 
4.84 and 2.83 folds over ‘PJT’, confirming ‘URT’ as elite variety (Figure 5c-d). In ‘URT’, total curcuminoid 
content in 340 µM PBZ treated plants was significantly dropped by 23.61% over control, whereas it was 
unchanged in ‘PJT’ (Figure 5c). Interestingly, curcuminoids yield per plant in ‘PJT’ rhizome was sensitive to 
PBZ treatments, resulting in a significant decrease by 54.22% under 170 µM PBZ treatment and 77.63% under 
340 µM PBZ treatment (Figure 5d). Similarly, curcuminoids yield per plant in ‘URT’ treated with 170 µM and 
340 µM PBZ was also declined by 19.10% and 34.75% over control, respectively (Figure 5d). In plantlets 
without PBZ treatment, RhDW per plant of ‘PJT’ was significantly greater than ‘URT’ by 1.71 folds (Figure 
6a). RhDW per plant in ‘PJT’ was retarded in relation to PBZ concentrations, leading to a decrease of 28.13% 
(170 µM PBZ) and 50.70% (340 µM PBZ) over control (Figure 6a). BIS, DEM and CUR in ‘URT’ rhizome 
was sensitive to PBZ, especially at the concentration of 340 µM, where a decrease of 34.5%, 25.85% and 18.17% 
was observed over control, respectively (Figure 6b-d). In ‘PJT’ rhizome, only DEM in 340 µM PBZ treated 
plants was significantly decreased by 58.25% over control (Figure 6c), whereas BIS and CUR were unchanged 
(Figure 6b and 6d). 

 

 
Figure 6.Figure 6.Figure 6.Figure 6. Rhizome dry weight (a), bisdemethoxycurcumin (b), demethoxycurcumin (c) and curcumin (d) 
in the rhizomes of two turmeric varieties, URT and PJT, upon exogenous foliar application by 0 (control), 
170 and 340 µM PBZ at vegetative stage prior to harvest at maturity (8 months-old) in the greenhouse 
conditions.  
Data presented as mean ± SE (n = 6). Different letters along each bar represent significant difference according to 
Tukey’s HSD test at p ≤ 0.05. 

 
    
DiscussionDiscussionDiscussionDiscussion    
 
Pseudostem height of turmeric cv. ‘PJT’ was significantly retarded by 340 µM PBZ exogenous foliar 

application, whereas it was unchanged in cv. ‘URT’. It is possible that PBZ response in turmeric plants depends 
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on the application method (soil drenching or foliar spray), degree of PBZ doses, and genotypic factor. In 
Patumma (Curcuma alismatifolia) cv. ‘Chiang Mai Pink’), pseudostem height of 1,500 mg L−1 PBZ-treated 
plants were retarded by 50% of control and slow growth rate was observed when compared with control plants 
(Jungklang et al., 2017). Pseudostem height in Patumma cv. ‘Kimono Pink’ (Boontiang et al., 2019), ginger 
(Zingiber officinale; Rusmin et al., 2015) and torch ginger (Etlingera elatior; Muangkaewngam and Te-chato, 
2018) was also retarded in response to the degree of PBZ application and period of cultivation. Interestingly, 
plant height of Zantedeschia elliottiana treated with 2-4 mg PBZ rhizome−1 was unchanged in both greenhouse 
and field trial conditions, whereas it was highly declined in Z. rehmannii (Corr and Widmer, 1991). In general, 
pseudostem height of cv. ‘PJT’ was extremely susceptible to PBZ treatment than cv. ‘URT’. Previously, shoot 
height of C. alismatifolia ‘Chiang Mai Pink’ (88 cm) was found to be sensitive to PBZ and retarded by 3.08 and 
4.94 folds compared with C. gracillima ‘Violet’ (28.6 cm) and C. thorelii (17.8 cm), respectively (Sarmiento 
and Kuehny, 2003). Inhibitory effects of PBZ in higher plants are closely related to GA inhibitors and result in 
dwarfed plants (Zhu et al., 2016; Seesangboon et al., 2018). Overall growth performances, i.e., STFW, STDW, 
LL and LW in turmeric plants of cv. ‘PJT’ were greater than those in cv. ‘URT’, whereas these parameters were 
maintained in PBZ-treated plants. Genotype has a significant effect on the plant’s response to PBZ as reported 
in Curcuma (Sarmiento and Kuehny, 2003) and Zantedeschia (Corr and Widmer, 1991). Plant height, leaf 
area and dry matter in two rose cultivars, ‘Yellow Terrazza’ and ‘Shiny Terrazza’ tend to decline with increase 
in a PBZ concentration (Carvalho-Zanão et al., 2018). In pepper (Capsicum chinense cvs. ‘Bode Amarela’ and 
‘Biquin Vermelha’), plant height and total leaf number were unchanged after 10 µM PBZ foliar spray, whereas 
only plant height was retarded after soil drenched PBZ application (França et al., 2017). In the root zone, 
overall root and rhizome traits in cv. ‘PJT’ were better than ‘URT’. The RTFW, RhW, RhFW and RhDW in 
‘PJT’ were significantly dropped, especially in 340 µM PBZ treated plants. Similarly, RTDW and number of 
tubers in two potato genotypes (Solanum tuberosum cvs. ‘Granola’ and ‘Agria’) treated with 90 mg L−1 PBZ 
were significantly decreased when compared with control (Esmaielpour et al., 2011) and number of tubers, 
tuber fresh mass, tuber dry mass and total yield of potato was significantly declined in relation to the rate of 
PBZ treatments (Tekalign and Hammes, 2004; de Araújo et al., 2020). In cassava (Manihot esculenta cv. 
‘Rocha’), fibrous roots fresh mass, tuberous root fresh mass, number of tuberous roots and tuberous root length 
were sharply dropped in plants treated with 45-90 mg PBZ plant−1 over the control (Medina et al., 2012). 

It was observed that the leaf greenness or SPAD unit of turmeric plant cvs. ‘PJT’ and ‘URT’ treated with 
PBZ foliar spray was significantly increased over control, especially after 340 µM PBZ treatment. In C. 
alismatifolia and Zingiber officinale, total chlorophyll content in the leaf tissues of PBZ treated plants was 
increased, depending on the degree of PBZ concentrations (Rusmin et al. 2015; Boontiang et al. 2019). A 
positive relationship between SPAD and maximum quantum yield of PSII (Fv/Fm) in herbaceous peony 
(Paeonia lactiflora) with PBZ treatment was demonstrated (r = 0.739; Xia et al., 2018). Similarly, ΦPSII in 
peanut (Arachis hypogaea) was found to be improved with PBZ treatment (Senoo and Isoda, 2003). Increased 
chlorophyll content in the leaves of PBZ-treated plants of Viola × wittrockiana (Gliožeris et al., 2007) and 
Syzygium myrtifolium (Roseli et al., 2012) was evidently observed. Stomatal functions including Pn, gs, and E 
in PBZ-treated plants were significantly decreased, especially in cv. ‘PJT’, while WUE was increased. Negative 
effects of PBZ treatment in terms of Pn, gs and E reduction have been well established in S. myrtifolium (Roseli 
et al., 2012), Caryopteris incana (Harmath et al., 2014), Litchi chinensis (Pandey et al., 2018), S. tuberosum 
(Tekalign and Hammes, 2005a), Camelina sativa (Kumar et al., 2012) and Arbutus unedo (Navarro et al., 
2007). In contrast, WUE was up-regulated by PBZ treatment (Pal et al., 2016; Xia et al., 2018). Therefore, 
genotypic variation strongly regulates Pn, gs and E in PBZ-treated plants (Rodrigues et al., 2016). 

Glucose in the leaf tissues of 340 µM PBZ treated plants of cvs. ‘URT’ and ‘PJT’ was significantly 
increased over control. However, fructose was increased only in the leaves of cv. ‘PJT’. TSS in pseudostems of 
5 mg L−1 PBZ treated wheat cvs. ‘Puntal’ and ‘Estrella’ were enriched over control, depending on the genetic 
background of the crop (Assuero et al., 2012). In maize (Zea mays cv. ‘Zhengdan958’), TSS in the leaf tissues 
of PBZ treated plants was promoted at early stage after silking (15 d DAS) and then, declined (Kamran et al., 
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2020). Sucrose level in the leaf tissues of turmeric plants was lower than in rhizome, especially in cv. ‘PJT’, 
whereas both glucose and fructose were improved with PBZ treatment. It is possible that greater sucrose 
accumulation rate in the rhizome is due to the fact that rhizome act as sink organ (storage), and the leaf tissues 
represent source organ (biosynthesis) (Zheng et al., 2012; Dewi and Darussalam, 2018; Smith et al., 2018). In 
Ethiopian mustard (Brassica carinata cv. ‘PC5’), TSS in the leaf tissues of PBZ-treated plants were accumulated 
in relation to the degree of PBZ foliar spray (Setia et al. 1995). In rhizome of cv. ‘PJT’, sucrose and glucose in 
340 µM PBZ treated plants were significantly decreased when compared with control, whereas those were 
unchanged in cv. ‘URT’. Similarly, soluble and non-soluble carbohydrate levels in PBZ treated grapevines (Vitis 
vinifera cv. ‘Seyval blanc’) were declined in relation to an increasing rate of PBZ concentrations (Hunter and 
Proctor, 1994). In contrast, total carbohydrate content in C. alismatifolia cv. ‘Kimono Pink’ treated with PBZ 
was increased over control in the rhizome, whereas it was unchanged in the leaf tissues (Boontiang et al., 2019). 
In tuber of potato (cv. ‘Markies’), TSS, reducing sugars and non-reducing sugars in PBZ-treated plants (10 and 
100 mg L−1 PBZ) were largely enriched over control (de Araújo et al., 2020). 

Interestingly, curcuminoids including BIS, DEM and CUR in non-elite ‘PJT’ and elite ‘URT’ genotypes 
were found to be negatively affected by PBZ treatment, especially in cv. ‘URT’. In Ophiopogon japonicus, 
ophiopogonin B, D and D´ concentrations, in the PBZ sprayed plants were sharply dropped when compared 
with control plants (Sun et al., 2020). Likewise, inulin content in the tuber of Helianthus tuberosus treated 
with 100 mg L−1 PBZ was decreased by 7.57% over control (Phasri et al., 2019). In fruit of Lichi chinensis, 
vitamin C and anthocyanin contents in PBZ-treated plants were lower than in control (Pandey et al., 2018). 
In agreement, oil yield of Ethiopian mustard treated with 20 mg L−1 PBZ was significantly declined by 4.6% 
over control (Setia et al., 1995). In contrast, ά-tocopherol in tuber of Dioscorea rotundata treated with 15 mg 
L−1 PBZ was unchanged when compared with control (Jaleel et al., 2007). In general, anthocyanin content in 
flower bracts (Boontiang et al., 2019) and vitamin C in leaf tissues (Jungklang et al. 2017) of C. alismatifolia 
treated by PBZ was increased over control. 

 
    
ConclusionsConclusionsConclusionsConclusions    
 
Pseudostem height, root fresh weight, rhizome width, rhizome fresh weight and rhizome dry weight in 

cv. ‘PJT’ treated with 340 µM PBZ were significantly retarded as along with stomatal functions, i.e., Pn, gs, E 
and WUE and sucrose and glucose content. Similarly, curcuminoids yield (mg plant−1) and DEM in cvs. ‘URT’ 
and ‘PJT’ treated with 340 µM PBZ were significantly decreased. Therefore, selecting a candidate cultivar (elite 
variety) with high curcuminoid levels and compact plant canopy (high density cultivated practices) using PBZ 
in the greenhouse needs further validation together with microclimatic controlled conditions. 
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