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AbstractAbstractAbstractAbstract    
    
Rhizobia which are soil bacteria capable of symbiosis with legume plants in the root or stem nodules and 

perform nitrogen fixation. Rhizobial genera include Agrobacterium, Allorhizobium, Aminobacter, 
Azorhizobium, Bradyrhizobium, Devosia, Mesorhizobium, Methylobacterium, Microvirga, Ochrobacterum, 
Phyllobacterium, Rhizobium, Shinella and Ensifer (Sinorhizobium). Review of the literature was carried out 
using the keywords Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum and Sinorhizobium. 
Rhizobial nodulation symbioses steps are included flavonoid signaling, Nod factor induction, and Nod factor 
perception, root hair responses, rhizobial infection, cell division and formation of nitrogen-fixing nodule. 
Rhizobium improves sustainable production by boosting organic nitrogen content.  

 
Keywords: Keywords: Keywords: Keywords: nod; rhizobial genera; rhizobial nodulation; sustainable production    
 
 
IntroductionIntroductionIntroductionIntroduction    
 
The food shortage is expecting in coming year as the population of the world has increased very fast 

(Khoshkharam et al., 2010; Riaziat et al., 2012; Soleymani et al., 2016; Shahrajabian et al., 2020), while climate 
change and natural resource depletion has caused many problems in food security (Soleymani et al., 2011a,b; 
Yazdpour et al., 2012; Abdollahi et al., 2018; Shahrajabian et al., 2019a,b; Sun et al., 2019, 2020). Rhizobia 
which are soil bacteria capable of symbiosis with legume plants in root or stem nodules and perform nitrogen 
fixation for the host (De Meyer et al., 2015) are traditionally belong to the genera Azorhizobium, 
Sinorhizobium, Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium (Sawada et al., 2003; Nandasena et 
al., 2004). Rhizobia are Proteobacteria (Mousavi et al., 2014) and Rhizobial genera include Agrobacterium, 
Allorhizobium, Aminobacter, Azorhizobium, Bradyrhizobium, Devosia, Mesorhizobium, Methylobacterium, 
Microvirga, Ochrobacterum, Phyllobacterium, Rhizobium, Shinella and Ensifer (Sinorhizobium) (Lindstrom 
and Mousavi, 2010; Lindstrom et al., 2013). Root nodulation is interaction of compatible rhizobia which 
activates an array of genes which result in nodule development (Das et al., 2019). The bacteria reduce 
dinitrogen to ammonium inside the legume-root nodule in exchange for a carbon and energy source (Prell and 
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Poole, 2006). The ability of adaptation of Rhizobia in diverse environment namely soil, rhizosphere and grown 
within legume roots may lead to nitrogen fixation, in a complicated process which contain a coordinated 
exchange of signal between the symbionts and plants (Ghosh and Maiti, 2016; Jack et al., 2019; Torabian et al., 
2019). Nodulation also varied on the basis of the species and site (Rejili et al., 2012). Two distinct types of 
nodules are formed on legumes, namely determinate which are usually formed on common plants in tropical 
regions such as Glycine max, Lotus japonicus or Vicia faba, and indeterminate (Gibson et al., 2008; Haag et al., 
2013). The most important examples of indeterminate-type nodules are Medicago, Trifolium, Pisum, and 
Vicia spp. (Janczarek et al., 2015; Bahroun et al., 2018). The most notable plant flavonoids are Flavones, 
Flavonols, Flavanones, Isoflavones, and Chalcones (Janczarek et al., 2015). There are almost 50 nodule-forming 
bacterial species within the genera (Wang et al., 2006; Hang et al., 2008). Nodule-forming bacteria is shown in 
Table 1. The most important characteristics of indeterminate and determinate nodules are indicated in Table 
2. The list of some important Rhizobium species and their corresponding hosts are presented in Table 3. The 
metabolic diversity of rhizobia on the basis of their large, complex genomes is shown in Table 4.  

 
Table 1.Table 1.Table 1.Table 1. Nodule-forming bacteria 

Genera Type 

The alpha-proteobacterial genera 

Agrobacterium, Allorhizobium, Azorhizobium, 
Bradyrhizobium, Mesorhizobium, Rhizobium, 
Sinorhizobium, Devosia, Methylobacterium, 

Ochrobactrum, Phyllobacterium 

The beta-proteobacterial genera Burkholderia, Cupriavidus 

 
Table 2.Table 2.Table 2.Table 2. The most important characteristics of indeterminate and determinate nodules 

Characteristic Determinate Indeterminate 

Host plant Bean, Soybean, Lotus Alfalfa, Pea, Medicago truncatula 

Nodule shape Spherical Elongated 

Nodule growth Cell expansion Cell division. Persistent meristem 

Initial cell divisions Outer cortex Inner cortex 

Flavonoids including nod genes Flavones, Flavonones Isoflavones 

 
Table 3.Table 3.Table 3.Table 3. The list of some important Rhizobium species and their corresponding hosts 

Rhizobium species Host plants 

Bradyrhizobium japanicum Glycine max (soybean) 

Rhizobium fredii Glycine max (soybean) 

R. phaseoli Phaseolus vulgaris (common bean) 

S. meliloti Medicago sativa (alfalfa) 

 Melilotus sp. (sweet clovers) 

Rhizobium leguminosarum bv. trifolii Trifolium sp. (clovers) 

R. leguminosarum Pisum sativum (peas) 

 Vicia faba (broad bean) 

Rhizobium sp. or cowpea rhizobia group Vigna unguiculata (cowpea) 

 Arachis hypogaea (peanut) 

 Vigna subterranean (Bambara groundnut) 

 Leucaena sp., Albizia sp., 

Azorhizobium caulinodans Sesbania sp. Sesbania rostrata (stem nodulating) 
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Table 4. Table 4. Table 4. Table 4. The metabolic diversity of rhizobia on the basis of their large, complex genomes 

Rhizobia Range 

Rhizobium etli 6.5 Mb 

Sinorhizobium meliloti 6.7 Mb (Giraud and Fleischman 2004) 

Mesorhizobium loti 7.6 Mb (Kaneko et al., 2000) 

Rhizobium leguminosarum 7.8 Mb 

Bradyrhizobium japonicum 9.1 Mb (Kaneko et al., 2002) 

 
Rhizobial modulation symbioses consists of flavonoid signaling, Nod factor induction and perception, 

root hair responses which included calcium flux and spiking, gene expression), rhizoial infection, cell division 
and nitrogen-fixing nodule formation. The most important alphaproteobacteria are 1) Allorhizobium 
included, Aminobacter, Azorhizobium, Bradyrhizobium, Devosia, Mesorhizobium, Methylobacterium, 
Microvirga, Neorhizobium, Ochrobactrum, Phyloobacterium, Rhizobium, Shinella, Sinorhizobium (Ensifer), 
2) Betaproteobacteris, consists of Cupriavidus, Paraburkholderia and Trinickia, and 3) Gamaproteobacteria. 
In this manuscript, we want to review Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, and 
Sinorhizobium. 

 
 
RhizobiumRhizobiumRhizobiumRhizobium    
 
The most important group of nitrogen fixing soil bacteria which can lead to mutualistic symbiotic 

association (root nodules) with leguminous plants are rhizobia (Gage, 2004: Werner, 2007; van Ham et al., 
2016). Rhizobium improves sustainable production by boosting organic nitrogen content (Youseif et al., 2014; 
Vanlauwe et al., 2019; Karoneyet al., 2020). The gram-negative rod-shaped bacteria was first discovered by 
Frank (1889). Indole acetic acid (IAA) catabolising enzyme in nodule, root, and 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase activity have significant important in plant growth promotion and plant-
microbes interaction of symbiotic phenomenon (Ghosh et al., 2013). Notable parameters which have been 
related to successful establishment of the symbiotic interaction are chemotaxis of the bacteria towards the roots, 
root colonization and its hair deformation, infection thread formation, and rapid division or root cortex cells 
(Spaink et al., 1998, 1992; Dardanelli et al., 2008; Junier et al., 2014; van Zeijl et al., 2015; Wang et al., 2016). 
Rhizobia produce Nod factors during the early development of nodules upon perception of flavonoid 
molecules secreted by legume roots (Servin-Garciduenas et al., 2014; Shamseldin et al., 2014), and Nod factors 
structure depends on species, chemical substitutions added which may impact legume specificity (D’Haeze and 
Holsters, 2002; Feng et al., 2002; Geurts and Bisseling, 2002). More than 44-66 million tons of nitrogen 
biologically fixed per year which provide half of requirements in agriculture (Alberton et al., 2006; Acosta et 
al., 2011). Nitrogen fixation and legumes yields depends on the rhizobium strain, the genotype of the legume, 
bio-physical environment, and management practices (Giller et al., 2013; Tong et al., 2018; Wolde-meskel et 
al., 2018; Flores-Felix et al., 2019). The combination of Rhizobium and Arbuscular mycorrhiza are more 
effective than individual applications as the highest root colonization, root nodulation and the maximum yield 
of chickpea (Cicer arietinum L.) was related to combined application of these treatments (Erman et al., 2011). 
Ahmad et al. (2013) observed that Rhizobium and Pseudomonas strains can improve the growth, physiology, 
and quality of mung bean under salt-affected conditions. Shaping rhizobial species-level taxonomic 
biogeography maybe under the influence direct or indirect impacts of abiotic and biotic soil factors and legume 
hosts (Ide Franzini et al., 2010; Uyanoz and Karaca, 2011; Xiong et al., 2017; Gao et al., 2019). Cao et al. 
(2017) found soil factors shaped the rhizobial populations stronger compare to the geographic distance. 
Moreover, the native rhizobia differed by site (Yadav and Verma, 2014; Mwenda et al., 2018; Stefan et al., 
2018). Rhizobium and cyanobacteria inoculants have positive feedback on plant growth and legumes yields 
(Babu et al., 2015). Inoculation of Rhizobium pisi and Pseudomonas monteilii is a promising biofertilization 
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strategy for common bean production (Sanchez et al., 2014). Different rhizobiums and their usages are shown 
in Table 5.  

 
Table 5.Table 5.Table 5.Table 5. Different Rhizobium and their usages 

Rhizobium Application and mechanism Reference 

Rhizobium leguminosarum 
It can nodulate Lathyrus spp., Pisum sativum, 

Melilotus indicus, Robinia pseudoacacia, 
Securigera varia, Trifolium and Vicia plants 

Weir et al. (2004) 
Alvarez-Martinez et al. (2009) Ramirez-

Bahena et al. (2009) 
De Mayer et al. (2011) 

Rogel et al. (2011) 
Marek-Kozaczuk et al. (2013) 

Chloralla vulgaris-Rhizobium sp. mixotrophic 
co-cultivation 

It can be applied for wastewater reclamation in 
continuous mode at multiple hydraulic 

retention times (HRT) of 3-7 days 
Ferro et al. (2019) 

Rhizobium sp.  Reduction of lipid accumulation in microalgae Fei et al. (2019) 

Rhizobium species Promote algal growth 
Gonzalez and Bashan (2000) 

Yao et al. (2019) 

Rhizobium laguerreae 
It is the main nitrogen fixing symbiont of lentil 

(Lens culinaris) 

Moswad and Beck (1991) 
Laguerre et al. (1992) 

Tian et al. (2010) 
Riahet al. (2014) 
Taha et al. (2018) 

   

Rhizobium meliloti 

Alfalfa and Rhizobium symbiotic association 
may stimulate the rhizosphere microflora is a 
useful method for aged polycyclic aromatic 
hydrocarbons (PAHs)-contaminated soils 

Mehmannavaz et al. (2002) 
Chekolet al. (2004) 

Radwan et al. (2007) 
Teng et al. (2011) 

Sanchez-Pardo and Zornoza (2014) Deepika 
et al. (2016) 

Cardoso et al. (2018) 
Duan et al. (2019) 

Ju et al. (2019) 

   

Rhizobium rhizogenes 

Its T-DNA is involved in fasciation of 
Nicotiana leaves. It also contains a highly 

mosaic genetic organization in tumorigenic 
strains. The pathogenic strains of Rhizobium 

could be considered as model to analyse 
bacterial evolution 

Velazquez et al. (2010) 

Rhizobium 
There is one alcohol dehydrogenase encoding 
gene in Rhizobium, and aldo-keto reductases 

which decrease aldehydes to alcohols 

Sadowskyt and Bohloot (1986) 
Willis and Walker (1998) 

Pizzimentiet al. (2013) 
Matos et al. (2019) 

The molecular structure of rhizobium 
exopolysaccharide (REPS) 

REPS polysaccharide possesses antitumor 
activity 

Zhao et al. (2010) 

Rhizobium massiliae 

Its water-soluble extracellular polysaccharide 
(WSP) of R. massiliae CA-1 can be used as a 
new immunomodulatory enhancing the early 

innate immunity 

Kim et al. (2017) 

Rhizobium radiobacter CAS 
Its physic-functional properties make it an 

important candidate for food processing and 
also product development sector 

Kavitake et al. (2019) 

Rhizobium  

Rhizobum strain contained ALK gene which 
revealed strong Nonylphenol (NP) 

degradation ability in liquid culture and 
showed a potential bio-remediating NP-

contaminated sediment 

Wang et al. (2014) 

Rhizobium spp. 

Pre-treatment of chickpea seedlings with 
Rhizobium spp. isolates activates genes 

involved in the phenylpropanoid pathway by 
promoting the accumulation of phenolic 

compounds 

Arfaoui et al. (2007) 

Rhizobium sp. MRP1  
It can be used as bacterial inoculants to boost 
pea production in fields which are polluted 

Ahemad and Khan (2011) 
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with fungicides 

Rhizobium tropici 
Symbiosis of common bean’s root and rhizobia 
can decrease the negative effects made by the 

allelopathic plant 
Perez-Peralta et al. (2019) 

Rhizobium bangladeshense 
Rhizobium aegyptiacum 

Nodulation of these Rhizobium with 
Trifolium alexandrinum may increase final 

yield 
Shamseldin et al. (2016) 

Rhizobium anhuiense 

R. anhuiense is the main symbiont for beach 
pea (Lathyrus maritimus or Lathyrus 

japonicus) rhizobia on the seashore line of 
China and Japan 

Li et al. (2016) 

Rhizobium (VR-1 and VA-1) 
Inoculation of host-specific fly-ash-tolerant 

Rhizobium strain with plants ha positive role 
in improving plant growth 

Chaudhary et al. (2011) 

Rhizobium 
Rhizobial bacteria can mitigate the negative 

impacts of excess arsenic (As) in legume-
rhizobium symbiosis 

Reichman (2007) 

Rhizobium 

Rhizobium strains in Sporobolus robustus 
Kunth’s rhizosphere has ability to act as a nurse 

plant to improve seedlings recruitment of 
Prosopis juliflora and Vachellia seyal in saline 

soils 

Fall et al. (2019) 

Rhizobium 

Nodulation and nitrogen fixation of guar 
(Cyamopsis tetragonolobus L. Taub.)) 
significantly, increase with indigenous 

Rhizobium in field conditions. Rhizobium 
inoculation also can have positive effects on 
productive qualitative traits of guar such as 

Galactomannan content 

Thapa et al. (2018) 
Gresta et al. (2019) 

Rhizobium PEPV16 
Inoculation with Rhizobium strains is a 

promising technique to improve the content of 
several bioactive compounds of strawberries 

Flores-Felix et al. (2018) 

R. leguminosarum 
R. fabae 
R. laguerreae 
R. anhuiense 

Nodulation of Vicia faba L. with these 
Rhizobium increase sustainable crop 

production 

Torres et al. (2012) 
Saidi et al. (2014) 

Youseif et al. (2014) 
Zhang et al. (2015) 

Belhadi et al. (2018) 

Rhizobium BMBS (Diazotrophic bacterium) 

Rhizobium BMBS and Arbuscular 
mycorrhizal fungi (Glomus intraradices) 

primed suggested as a bioprotectant against 
Spodopteralitura in blackgram 

Selvaraj et al. (2020) 

Rhizobium freirei PRF 81 

It has adaptive response to acid pH and this 
acid tolerance decrease internal acidification 

show the broad range of metabolic pathways of 
this Rhizobium 

Hungria et al. (2000) 
Tullio et al. (2019) 

   

Rhizobium 
Rhizobium inoculation can improve uptake of 
water, macro and micro nutrients in legumes 

such as soybean 

Gao et al. (2010) 
Nyoki and Ndakidemi (2018) 

 
Table 6.Table 6.Table 6.Table 6. The most important rhizobia nodulated with Phaseolus vulgaris 

Rhizobium Reference 

Rhizobium etili, Rhizobium tropici, Rhizobium 
leguminosarum bv. phaseoli, Rhizobium gallicum, 
Rhizobium azibense 

Mnasri et al. (2014) 

Rhizobium freirei Dall׳Agnol et al. (2013) 

Rhizobium mesoamericanum Lopez-Lopez et al. (2012) 

Sinorhizobium meliloti Zurdo-Pineiro et al. (2009) 

Sinorhizobium americanum Mnasri et al. (2012) 

Bradyrhizobium sp.  Han et al. (2005) 

R. etli in the South and Middle Americas Amarger (2001) 

R. etli in Europe Garcia-Fraile et al. (2010) 
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R. etli in Jordan Tamimi and Young (2004) 

R. tropici in regions with high temperature and acid soils 
Martinez-Romero et al. (1991) 

Anyango et al. (1995) 
Grange and Hungria (2004) 

R. phaseoli and R. etli in Africa Aserse et al. (2012) 

R. leguminosarum, R. etli and Rhizobium sp. II or IV Cao et al. (2014) 

 
 
AgrobacteriumAgrobacteriumAgrobacteriumAgrobacterium    
 
The genus Agrobacterium was created by Conn (1943) within the family Rhizobiaceae together with 

the genus Rhizobium (Frank, 1889). Agrobacterium tumefaciens was first isolated from the gall tissue and 
recognized as the cause of crown gall disease (Smith and Townsend, 1907). Bacteria belong to Agrobacterium 
group are recognized as symbionts and pathogen of specific plants (Long et al., 1989; Goodner et al., 2001), 
and known as intracellular bacteria in the hyphae of a few endophytic fungal species (Sharma et al., 2008; 
Baltrus et al., 2017; Guo et al., 2018). It has extraordinary capacity to transfer its genetic material to host cell 
which makes it evolve from phytopathogen to a powerful transgenic vector (Ziemienowicz 2014; Guo et al., 
2019). Agrobacterium tumefaciens, is a gram-negative, soil-born phytopathogenic bacterium which is called a 
nature’s engineer because of its ability to genetically transform the host by transferring a DNA fragment (T-
DNA) from its Ti plasmid to host-cell genome (Guo et al., 2009; Guo et al., 2011; Nester, 2015; Guo et al., 
2017; Sun et al., 2018; Wixom et al., 2018). Agrobacterium tumefaciens-mediated transformation (ATAT) is 
an effective genetic transformation method in recent 20 years (Gu et al., 206; Moon et al., 2008; Shao et al., 
2015; Yang et al., 2018), which is a member of the alpha-Proteobacteria which a resident of the soil and 
rhizosphere (Hanana et al., 2018; Li et al., 2018; Nathoo et al., 2019; Niazian et al., 2019). ATMT works well 
with different fungal materials such as spores, mycelia, and gill tissues of mushroom (Chen et al., 2000; Mulllins 
et al., 2001; Park et al., 2013), which makes it appropriate for fungal genetic manipulation (Xu et al., 2016; 
Idnurm et al., 2017; Long et al., 2018). In pharmaceutical studies, this technique has been also used to produce 
various proteins, and general functional studies of plant proteins (O’Neill et al., 2008; Jones, 2016). Several 
studies introduced ATMT as an initiative bio-transformation system which may provide new insights into 
fungal pathogenesis, pigmentation, sporulation, and antibiotic resistance (Jeon et al., 2007; Huser et al., 2009; 
Mischielse et al., 2009; Zhang et al., 2011). Along with A. tuerfaciens, Agrobacterium rhizogenes, has been used 
to affect genetic transformation in many plants for several years (Bahramnejad et al., 2017). Agrobacterium 
rhizogenes - mediated transformations has a lot of advantages such as fast growth rates, ease of maintenance, 
genetic stability, large scale biomass production which does not need external usage of phytohormones and 
ability to synthesize a broad array of valuable secondary metabolites (Srivastava and Srivastava, 2007; Chandra 
and Chandra, 2011). Agrobacterium rhizogenes includes a root-inducing (Ri) plasmid (Chen et al., 2018) 
which contains root locus (rol) genes in the T-DNA region consist of rolA, rolB, rolC, and rolD (Christey and 
Braun, 2005). Hairy root cultures have been studied for application as pharmaceuticals, nutraceuticals, food 
additives and cosmetic (Srivastava and Srivastava, 2007; Chandra and Chandra, 2011). Hairy root caused by 
Agrobacterium rhizogenes and cane gall caused by A. rubi (Pacurar et al., 2011). The most important 
characteristics of Agrobacteria is indicated in Table 7. The most important species included in the genus 
Agrobacterium and species causing tumors and hair roots in other genera of family Rhizobiaceaeare presented 
in Table 8. Hairy roots benefits in some reported samples are shown in Figure 10. Different Agrobacterium for 
different plants is presented in Table 10.  
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Table 7.Table 7.Table 7.Table 7. The most important characteristics of Agrobacteria 

1- A group of Gram-negative, non-spore-forming soil bacteria, mainly isolated from abnormal proliferating 
plant tissues 

2- They belong to a large family of plant-associated bacteria, namely Rhizobiaceae, which include Rhizbonium 
and Sinorhizobium, which are nitrogen-fixing symbiotic bacteria 

3- They are able to catabolize a large variety of metabolites, and they can show chemotactic behavior for some 
plant exudates 

4- The genome composition of Agrobacterium tumefaciens is circular chromosome secondary linear 
chromosome 

5- The genome composition of Agrobacterium radiobacter is circular chromosome four plasmids 

6- The genome composition of Agrobacterium vitis is circular chromosome, chromosome, and five plasmids. 

7- Agrobacterium-induced tumors in nature which have been documented on more than 1000 different plant 
species, belonging to most of the families of the dicotyledonous plants 

8- In researches related to general cell and molecular biology, Agrobacterium interactions with its host cells 
have emerged as an important experimental system 

9- Classification of different species of Agrobacterium is predominantly based on their phytopathogenic 
properties 

10- Under optimal laboratory conditions, Agrobacteria are motile (with one to six flagella), aerobic, rod-shaped 
bacteria, with a slow generation time (1.5 to several hours) 

11- T-DNA and the virulence (vir) region are two important genetic regions on the Ti plasmid which are 
essential for Agrobacterium to transfer DNA to plant cells 

12- Agrobacterium Tiplasmif consider as gene vector for plant genetic engineering 

13- Agrobacterium mediated gene transfer is controlled by different factors such as bacterial factors, host and 
environmental origin 

14- Agrobacterium has been successfully applied for various economically and horticulturally important 
monocot and dicot species transformation via standard tissue culture and in planta transformation 
techniques 

15- Gene transfer from Agrobacterium to plant cells consist of five important steps which are, induction of the 
bacterial virulence system, generation of T-DNA complex, transfer of T-DNA from Agrobacterium to the 
host cell nucleus, integration of T-DNA into the plant genome, and expression of T-DNA genes 

16- The most important factors which impact Agrobacterium mediated plant transformations are explants type, 
vector plasmid, bacterial strain, composition of culture medium, temperature of co-cultivation, time of co-
cultivation, Agrobacterium density, pH of co-cultivation medium, antibiotics, chemicals, surfactants and 
selected markers 

17- The ability of infecting plants is because of the possession of large plasmids by both bacterial species, known 
as Ti and Ri plasmids for both A. tumefaciens and A. rhizogenes 

 
Table 8.Table 8.Table 8.Table 8. The most important species included in the genus Agrobacterium and species causing tumors and 
hair roots in other genera of family Rhizobiaceae (Flores-Felix et al., 2020) 

Genus Species 

Agrobacterium A. radiobacter, A. tumerfaciens, A. rubi, A. larrymoorei, A. albertimagni, A. fabrum,  
A. pusense, A. nepotum, A. skierniewicense, A. arsenijevicii, A. deltaense, A. salinitolerans,  
A. bohemicum, A. rosae 

Allorhizobium A. vitis 
Rhizobium R. rhizogenes, R. tumorigenes 
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Table 9.Table 9.Table 9.Table 9. Hairy roots reported in some crops 

Benefits of hairy roots References 

Increase the amount of saponin in Bacopamonnieri Majumdar et al. (2011) 

Enhance the amount of anthroquinones in Polygonum 
multiflorum 

Thiruvengadam et al. (2014a) 

Increase total phenolic content in Solanum lycopersicum Singh et al. (2014) 

Increase polyphenols in Momordica charantia Thiruvengadam et al. (2014b) 

Enhance the amount of glucosinolates in Arabidopsis 
thaliana 

Kastell et al. (2015) 

Increase phenolic compounds in Momordica dioica 
Roxb. ex. Willd 

Thiruvengadam et al. (2016) 

 
Table 10.Table 10.Table 10.Table 10. Different Agrobacterium for different plants 

Different Agrobacterium isolated from nature  Reference 

Agrobacterium tumefaciens *A gram-negative and rod-shaped plant 
pathogen belonging to the family Rhizobiacea. 

It can transfer transferred DNA (T-DNA), 
which is located in its tumor-inducing (Ti) 
plasmid, into the chromosome of the target 

cells at random sites. 
*Strain Chry5 is hypervirulent on many plants, 
especially soybean. Tumors induced by Chry5 

contain a novel opine called chrysopine. 
Agrobacterium tumefaciens and its Ti plasmid 
have been extensively used as a vector to create 

transgenic plants and fungi. 
*It is specific for NAD+ as a cofactor, but 

accepted both D-galacturonic acid (GalA) and 
D-glucuronic acid (GlcA) as substrates with 
similar affinities, and the reaction product is 

probably the hexaro-lactone, which 
spontaneously hydrolyzes. 

*In Soybean, the hypervirulent Agrobacterium 
tumefaciens strains KYRT1 proved to be a 

better transformer than EHA105 and 
LBA4404 

Van Larebeke et al. (1975) 
Bush and Pueppke (1991) 

Dessaux et al. (1993) 
Chilton et al. (1995) 

Palanichelvam et al. (2000) 
Satyavathi et al. (2002) 
Dang and Wei (2007) 

Shao et al. (2018) 
Murugan et al. (2019) 

Xiao et al. (2020) 

Agrobacterium sp. H13-3 (Rhizobium lupine 
H13-3) 

*It is a soil bacterium isolated from the 
rhizosphere of Lupiunus luteus. It is unable to 

nodulate Lupinus under laboratory 
conditions. Its highly conserved circular 
chromosome (2.82 Mb) mainly encodes 

housekeeping functions characteristic for an 
aerobic, heterotrophic bacterium. It also posses 

a linear chromosome (2.15 Mb) which is 
related to its reference replicon and features 
chromosomal and plasmid-like properties. It 
has been reported that a tumor-inducing Ti- 

plasmid is missing in the sequenced strain 
H13-3 indicating that it is a non-virulent 

isolate 

Balassa (1957) 
Gabor (1965) 

Wibberg et al. (2011) 

Agrobacterium rhizogenes *Hydroponically-inoculated of Daturainnoxia 
plants with Agrobacterium rhizogenes can 
increase growth and alkaloid metabolism 
which may be more useful for successful 
specialized metabolite bioproduction in 

greenhouses 

Vu et al. (2018) 

Agrobacterium fabrum *It has evolved a mechanism to deliver genes 
into cell of wounded plant tissue. It is 

considered as the suitable model organism, 
and a widely used vector for plant 

transformation  

Deropp (1951) 
Klee et al. (1987) 

Zupan et al. (2000) 
Bai et al. (2016) 

Agrobacterium-mediated transformation *A common and convenient method to Kobayashi and Uchimiya (1989) 
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integrate gene into plant at higher efficiencies. 
This method could be providing a 

regeneration of transgenic plant from leaf and 
stem segments to increase biomass, chemical 

components yield and quality of plants. 
Genetic transformation methods are divided 

into direct gene transfer and indirect gene 
transfer methods according to the transferring 

procedure. 

Vardi et al. (1990) 
Hidaka and Omura (1993) 

Yao et al. (1996) 
Wang et al. (1998) 
Dai et al. (2001) 

Niedz et al. (2003) 
Gao et al. (2008) 

Shewry et al. (2008) 
Ozawa (2009) 

He et al. (2010) 
Ozawa and Takaiwa (2010) 

Abdallat et al. (2011) 
Dewir et al. (2015) 
Koetle et al. (2015) 

Nabeshima et al. (2016) 
Huang et al. (2017) 

Shivani and Tiwari (2019) 
Singh et al. (2019) 

Agrobacterium tumefaciens *The Agrobacterium tumefaciens-mediated 
transformation (ATMT) technique has been 

used in randomized mutagenesis experiments, 
which has higher efficiency and percentage of 
single-copy patterns of T-DNA added into the 

fungal recipient. ATMT may be used as a 
molecular tool for different agronomical 

plants. 

Mullins and Kang (2001) 
Leclerque et al. (2004) 

Sugui et al. (2005) 
Michielse et al. (2008) 
Talhinhas et al. (2008) 

Islam et al. (2012) 
Jiang et al. (2013) 

Li et al. (2019) 

 
 
BradyrhizobiumBradyrhizobiumBradyrhizobiumBradyrhizobium    
    
Distribution of rhizobial species is significantly influenced by geographical isolation and leguminous 

hosts (Keller et al., 2018; Ji et al., 2019). Various leguminous woody plants and herbs such as soybean, peanut, 
and cowpea, nodulated by bacteria belonging to the genus Bradyrhizobium (Moulin et al., 2004; Degefu et al., 
2017). Slow-growing rhizobia classified within the genus Bradyrhizobium, including B. japonicum, B. lupine, 
B. canariense and B. elkanii species have role in nodulating of lupines species (Peix et al., 2015; Shamseldin et 
al., 2017; Stepkowski et al., 2018; Mellal et al., 2019). B. japonicum also recommend as a plant growth-
promoting rhizobacterium for various plant species in sites contaminated with heavy metals (Reichman, 2014). 
The positive role of Bradyrhizobium - legume nodulation in maintaining plant community structure and 
restoration of degraded ecosystems has been reported in Southwest China (Liu et al., 2015). Minimizing 
deleterious effects of exposing plants to composted tannery sludge because of inoculation with Bradyrhizobium 
is an important way to ensure plant growth and productivity (Moraes et al., 2016). Improving growth and 
symbiotic performance of lupin under drought stress is reported by HTC-based Bradyrhizobium sp. 
(Egamberdieva et al., 2017). Li et al. (2019) proposed isolated Bradyrhizobium nanningense sp. nov., 
Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov. of peanut in Southeast 
China. B. japonicum, B. elkanii and B. liaoningense are famous isolated Bradyrhizobium from Glycine max 
nodules in Japan, the USA and China, respectively (Jordan, 1982; Kuykendall et al., 1992; Xu et al., 1995). B. 
pachyrhizi and B. jicamae are isolated Bradyrhizoium from Pachyrhizuserosus nodules in Costa Rica and 
Honduras, respectively (Ramirez-Bahena et al., 2009), and B. Cytisi and B. rifense are isolated Bradyrhizobium 
from Cytisusvillosus nodules in Morocco (Chahboune et al., 2011; Chahboune et al., 2012). Inoculation with 
nodulatin B. japonicum is important agricultural practice which can increase the content of bioactive 
metabolites in Glycine Max seeds (Silva et al., 2013). Various benefits and advantages of Bradyrhizobium are 
shown in Table 11.  
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Table 11. Table 11. Table 11. Table 11. Various benefits and advantages of Bradyrhizobium 

Bradyrhizobium Benefits and advantages References 

Bradyrhizobium 
Peanut (Arachis hypogeae L.) 

nodulated by the genus 
Bradyrhizobium. 

Fabra et al. (2010) 

Bradyrhizobium and fungal 
endophyte Phomopsis liquidambari 

P. liquidambari inoculation may 
increase flavonoids synthesis-related 

enzymes activities and its 
contribution enhances peanut-

bradyrhizobium interaction, yield and 
nodulation. 

Zhang et al. (2016) 

Bradyrhizobium japonicum E109 
and Azospirillum brasilenseAz39 

B. japonicum E109 and A. 
brasilenseAz39 inoculation is the 
useful practice to improve both 

growth and yield of soybean exposed 
to As 

Armendariz et al. (2019) 

Bradyrhizobium japonicum E109 

It is able to produce indole acetic acid 
(IAA), gibberellins (GA3) and zeatin 

(Z) which can lead to significant 
morphological and physiological 

changes in maize and soybean young 
seed tissues 

Cassan et al. (2009) 
Garcia et al. (2017) 

Bradyrhizobium japonicum 

B. japonicum can be considered as an 
attractive selection for remediation of 

fungicide polluted soils and to 
concurrently increase greengram 
production especially in stressed 

environment. 

Shahid and Saghir Khan (2019) 

Bradyrhizobium japonicum 
USDA119 

It can be considered as a model 
organism for screening pollutants for 

toxicity against a soil microbial 
community 

Shah and Subramaniam (2018) 

Bradyrhizobium 

It has been used for eco-toxicity 
studies such as measuring toxicity 
include chlorimuron-ethyl, heavy 
metals, metal-rich sewage sludge, 

acidity, phospate, herbicides, osmotic 
stress, nanoparticles and etc. 

Keyser and Munns (1979) 
Moorman (1986) 

Kinkle et al. (1987) 
Zawoznik and Tomaro (2005) 

Soria et al. (2006) 
Reichman (2014) 

 

Bradyrhizobium yuanmingense 
It is a potent rhizobium for the 

development of groundnut inoculants 
in Ghana. 

Osei et al. (2018) 

Bradyrhizobium canariense and 
Bradyrhizobium japonicum 

These two Bradyrhizobium are 
dominant rhizobium species in root 

nodules of lupin and serradella plants 
in Europe 

Stepkowski et al. (2011) 

Bradyrhizobium algeriense 

B. algeriense is able to establish 
effective symbioses with Retama 

raetam, Lupinus micranthus, Lupinus 
albus, and Genista numidica 

Ahnia et al. (2018) 

Brazilian Bradyrhizobium The Brazilian Bradyrhizobium Bellini et al. (2019) 
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japonicum japonicum strain CPAC-15 
(=SEMIA 5079) is an important 

intermediate for semi-synthesis of β-
lactam antibiotics such as penicillins, 

cephalosporins and amoxicillin. 

Bradyrhizobium diazoefficiens 

B. diazoefficiens strain USDA110 has 
XoxF, a lanthanides-dependent 
MDH, which has the ability of 

methanol oxidation and is induced by 
methanol/lanthanaides. Lanthanide 

consider as the key factors in 
methanol utilization by the strain. 

Liu et al. (2018) 
Wang et al. (2019) 

Bradyrhizobium cytisi and 
Bradyrhizobium rifense 

The strains isolated from Astragalus 
algarbiensis clustered with B. cytisi 

and B. rifense  
Alami et al. (2019) 

Bradyrhizobium canariense 

The Mimosid tree Leucaena 
Leucocephala can be nodulated by 

symbiovargenistearum of 
Bradyrhizobiumcanariense 

Ramirez-Bahena et al. (2020) 

 
 
HerbaspirillumHerbaspirillumHerbaspirillumHerbaspirillum    
Herbaspirillum seropedicae which can colonize a variety of higher plants, are diazotrophic endophytes; 

moreover, they have role in carbon catabolism by utilizing diverse carbon substrates and employ the Entner-
Doudoroff route (Baldani et al., 1986; Falk et al., 1986; Catalan et al., 2007). This endophytic diazotrophic β-
Proteobacterium nitrogen-fixing bacterium has association with important agricultural plants such as rice, 
maize, sorghum, sugarcane and wheat for nitrogen fixation (Galvao et al., 2004; Chaves et al., 2009; Serrato et 
al., 2012; Govarthanan et al., 2014; Dos Santos et al., 2017). Its capacity of convert N2 to NH3 through 
biological nitrogen fixation has made it a plant growth-promoting bacterium (Pessoa et al., 2016). NifA protein 
regulates nitrogen fixation in H. seropedicae at the transcriptional level (Oliveira et al., 2012), NifA itself is a 
member of the enhancer binding protein family with three structural domains (Studholme and Dixon, 2003). 
Ammonium ions through a mechanism involving its N-terminal domain control the activity of NifA, and N-
terminal domain inhibits NifA-dependent transcriptional activation by an inter-domain cross-talk between 
the catalytic domain of the NifA protein and its regulatory N-terminal domain in response to fixed nitrogen 
(Monteiro et al., 2001). The activity of NifA is negatively influenced by oxygen (Monteiro et al., 1999; Souza 
et al., 1999; Oliveira et al., 2009), but interaction with Glnk positively influence it, and binding of 2-OG and 
MgATP to Glnk are very important for NifA activation (Stefanello et al., 2020). Its oxygen sensitivity may 
attribute to a conserved motif of cysteine residues in NifA which spans the central AAA+ domain and the 
interdomain linker which connects the AAA+ domain to the C-terminal DNA binding domain (Oliveira et 
al., 2009). GlnK, a PII signaling protein which monitors intracellular levels of key metabolite 2-oxoglutrate (2-
OG) and works as an indirect sensor of the intracellular nitrogen status (Monteiro et al., 1999; Monteiro et al., 
2003; Dixon and Khan, 2004; Noindorf et al., 2011; Oliveira et al., 2012). In the Betaproteobacterium H. 
seropedicae, the sensing of environmental signals is performed by the NifA protein itself, and the NifL protein 
is absent (Dixon and Kahn, 2004). Colonization sites detected for Herbaspirillum seropedicae (β), and 
Herbaspirillum rubrishubalbicans (β) are indicated in Table 12.  
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Table 12.Table 12.Table 12.Table 12.    Colonization sites detected for Herbaspirillum seropedicae (β), and Herbaspirillum rubrishub 
albicans (β) 

Herbaspirillum 
seropedicae (β) 

Sugar cane 
Roots: Intercellular, Intracellular in cortex, Xylem vessels 

Shoots: Intracellular in xylem vessels 

Sorghum Shoots: Intracellular, Confined to xylem vessels at point of injection 

Herbaspirillum 
rubrishub  

albicans (β) 

Sugar cane 
Shoots: In leaves, Intercellular, Intracellular in substomatal cavities, 

Mesophyll, Xylem vessels 

Sorghum Shoots: In leaves, Intracellular in xylem vessels 

 
Pedrosa et al. (2001) found that nitrogen fixation in H. seropedicae (of the β-subgroup of 

Proteobacteria), has regulatory features in common with Klebsiella pneumonia (of the γ-subgroup and with 
rhizobia and Azospirillum brasilense (of the α-subgroup), at the level of NifA expression, and at the level of 
control of NifA by oxygen, respectively. Hu et al. (2020) found observed that nirS denitrifying bacteria 
Herbaspirillum and Pseudomonas were the dominant species in declined P. crispus sediment. NtrC regulates 
several operons involved in nitrogen assimilation in Herbaspirillum seropedicae (Twerdochlib et al., 2003). 
Lubambo et al. (2013) found that Herbaspirillum seropedicae GlnB (Glnb-Hs) is a signal transduction protein 
which has role in controlling of nitrogen, carbon, and energetic metabolism.  

 
    
SinorhizobiumSinorhizobiumSinorhizobiumSinorhizobium    
Sinorhizobium meliloti is a Gram-negative soil bacterium which accumulate N-acetylglutaminyl 

glutamine amide and trehalose in hyperosmolarity (Brique et al., 2010; Ferroni et al., 2012), and it survive needs 
developing active adaptive mechanisms quite different in humidity and aridity (Miller and Wood, 1996). Two 
famous phylogenetically closely-related species are Sinorhizobium (Ensifer) meliloti and S. medicae (Rome et 
al., 1996; Roumiantseva et al., 1999; Young et al., 2001), live free in soil or in symbiosis with leguminous plants 
and perform nitrogen fixation (Ferri et al., 2010; Wibberg et al., 2013; Dohlemann et al., 2016). Their genomes 
show multipartite architecture (Roumiantseva et al., 1999), and high genetic similarity (Rome et al., 1996). 
The endogenous compatible solutes in S. meliloti are the amino acid glutamate, the dipeptide N-

acetylglutaminyl glutamine amide (NAGGN) and the disaccharide trehalose (αGlucose-(1↔1)-αGlucose) 
(Smith and Smith, 1989; Breedveld et al., 1990; Botsford and Lewis, 1990). The S. meliloti genome is 
composed of a chromosome (3.65 Mb), and the megaplasmidspSyma (1.35 mb) and pSymB (1.68 Mb) 
(Galibert et al., 2001). It produces sizable quantities of synthesize polyhydroxyalkanoates (PHA) and 
exopolysaccharides (EPS) (Tombolini and Nuti, 1989; Reinhold et al., 1994; Saranya Devi et al., 2012). 
Shamala et al. (2014) found that free living cells of S. meliloti influenced by fermentation conditions like pH, 
dissolved oxygen level, amount of carbon and nitrogen. It has been reported that all strains of Sinorhizobium 
meliloti do not stimulate plant growth of alfalfa cultivar in a similar extent (Zeng et al., 2007). Tu et al. (2011) 
suggests that S. meliloti is promising in biodegradation capability and metabolic intermediate of 
polychlorinated biphenyls. The survival and persistence of S. meliloti was increased by alfalfa cultivation and 
enhanced soil fertility (Bhattacharya and Das, 2003; Da and Deng, 2003). This nitrogen-fixing α-
proteobacterium is able to biosynthesize osmoprotectant glycine betaine from choline sulfate via a metabolic 
pathway which starts with the enzyme choline-O-sulfatase (Sanchez-Romero and Olguin, 2015). The nifA 
gene of S. meliloti is the most important regulator which activates the expression of fix genes and a bunch of 
nif (Better et al., 1984; Szeto et al., 1984; Earl et al., 1987). NifA plays a regulatory role in multiple cellular 
process, and it may nifA null mutant may induce small white invalid nodules in the roots of host plant (Gong 
et al., 2007). The rhizobia which nodulate the tropical leguminous trees Acacia Senegal and Prosopis chilensis 
are Sinorhizobium arboris and S. kostiense (Zhang et al., 1991; Nick et al., 1999; Nowak et al., 2004). The first 
strains of the species described as nodulating Lotus was S. meliloti symbiovar lancerottense (Leon-Barrios et al., 
2017). Nodulation and mycorrhizal dependency (MD) in each plant genotype vary on the basis of 
Sinorhizobium strain and arbuscular mycorrhizal (AM) fungi involved (Vazquez et al., 2001). Several studies 



Shahrajabian MHet al. (2021). Not Bot HortiAgrobo 49(3):12183 

13 

 

 

 

 

 

 

recognized Sinorhizobium meliloti 1021 as a model organism for the study of symbiotic nitrogen fixation with 
legume plant hosts such as alfalfa, barrel medic, and some other plants of the Medicago and Melilotus genera 
(Jones et al., 2007b; Gibson et al., 2008). Its important transducing phage ΦM12 (Brewer et al., 2014) was 
originally isolated from a commercial rhizobial seed inoculants prepared for field crop use on alfalfa (Finan et 
al., 1984). Carbohydrate cycling in S. meliloti is independent of the gluconate bypass and also observed on 
fructose which makes this bacterium different from those of alginate-synthesizing species (Gosselin et al., 
2001).  

Sinorhizobium meliloti belongs to the alpha class of the Gram-negative proteobacteria 
(Alphaproteobacteria). For a long time, it has been studied to infect roots of leguminous plants especially the 
genus Medicago (M. sativa and M. truncatula) (Xue and Biondi, 2019). Nod factors produced by bacteria and 
the flavonoids secreted into the rhizophere by the plants after the first contact between bacteria and plants 
(Cooper, 2007; Liu and Murray, 2016). Nod factors modulate the entry of the bacteria into the plant tissue 
which occurs following the formation of a modified radical root hair (Shaw and Long, 2003; Sieberer et al., 
2005). Then, the root hair traps a few S. meliloti cells, which penetrate inside the root tissue and induce the 
formation of an infection thread which is sealed after the entrance of few bacteria (Jones and Walker, 2008). 
After that, bacteria divides, reach the internal tissue which will host the future bacteroids. Then, bacteria are 
introduced into the plant cell by invagination of the plant cell membrane, which may lead to bacterium being 
surrounded by a plant derived membrane. This prokaryotic cell called a symbiosome (Jones et al., 2007). Even 
without the presence of legumes, S. meliloti lives in the soil are free-living organism (Carelli et al., 2000). S. 
meliloti is able to colonize the whole plant and the plant may have evolved a way to induce a terminal 
differentiation which may lead to blocking bacteria duplication and preventing uncontrolled colonization of 
the plant (Xue and Biondi, 2019). A S. meliloti bacteroid has two important features: a) Nitrogen fixation, b) 
Generating new cells once the nodule enters a senescent state (Kereszt et al., 2011). Specific regulators of Fix 
and Nif control the bacteroid metabolism (Jones et al., 2007). The activity of CtrA which has role in cell cycle 
regulation across alphaproteobacterial species, may regulate coordinates DNA replication, cell division and 
presumably bacteroid differentiation (Brilli et al., 2010). Ctr A is essential for viability and controlling essential 
functions such as cell division, DNA replication and DNA methylation in S. meliloti (Xue and Biondi, 2019). 
Ctr A has can also considered as a crucial factor during bacteroid differentiation (Xue and Biondi, 2019). 
Peptides, such as NCR247, may be targeting directly or indirectly CtrA with its complex regulatory apparatus 
(Xue and Biondi, 2019). 

  
    

ConclusionsConclusionsConclusionsConclusions    
 
Soil bacteria which are known as rhizobia (in roots and rarely stems) can associate with some plants 

(especially from the Leguminosae) and trees, forming specialized organs known as nodules. The ability of 
adaptation of Rhizobia in diverse environment namely soil, rhizosphere and grown within legume roots may 
lead to nitrogen fixation, in a complicated process which contain a coordinated exchange of signal between the 
symbionts and plants. Nodulation also varied on the basis of the species and site. There are almost 50 nodule-
forming bacterial species within the genera. The most important alphaproteobacteria are 1) Allorhizobium 
included, Aminobacter, Azorhizobium, Bradyrhizobium, Devosia, Mesorhizobium, Methylobacterium, 
Microvirga, Neorhizobium, Ochrobactrum, Phyloobacterium, Rhizobium, Shinella, Sinorhizobium (Ensifer), 
2) Betaproteobacteris, consists of Cupriavidus, Paraburkholderia and Trinickia, and 3) Gamaproteobacteria. 
Rhizobium improves sustainable production by boosting organic nitrogen content. Notable parameters which 
have been related to successful establishment of the symbiotic interaction are chemotaxis of the bacteria 
towards the roots, root colonization and its hair deformation, infection thread formation, and rapid division 
or root cortex cells. Rhizobia produce Nod factors during the early development of nodules upon perception 
of flavonoid molecules secreted by legume roots, and Nod factor’s structure depends on species, chemical 
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substitutions added which may impact legume specificity. Nitrogen fixation and legumes yields depends on the 
rhizobium strain, the genotype of the legume, bio-physical environment, and management practices. 
Rhizobium and cyanobacteria inoculants have positive feedback on plant growth and legumes yields. 
Inoculation of Rhizobium pisi and Pseudomonas monteilii is a promising biofertilization strategy for common 
bean production. The genus Agrobacterium is within the family Rhizobiaceae together with the genus 
Rhizobium. Agrobacterium tumefaciens, is a gram-negative, soil-born phytopathogenic bacterium which is 
called a nature’s engineer because of its ability to genetically transform the host by transferring a DNA fragment 
(T-DNA) from its Ti plasmid to host-cell genome. Agrobacterium rhizogenes-mediated transformations has a 
lot of advantages such as fast growth rates, ease of maintenance, genetic stability, large scale biomas production 
which does not need external usage of phytohormones and ability to synthesize a broad array of valuable 
secondary metabolites. Hairy root cultures have been studied for application as pharmaceuticals, nutraceuticals, 
food additives and cosmetic. Hairy root caused by Agrobacterium rhizogenes and cane gall caused by A. rubi. 
Slow-growing rhizobia classified within the genus Bradyrhizobium, including B. japonicum, B. lupine, B. 
canariense and B. elkanii species have role in nodulating of lupines species. B. japonicum also recommend as a 
plant growth-promoting rhizobacterium for various plant species in sites contaminated with heavy metals. 
Herbaspirillumseropedicae which can colonize a variety of higher plants, are diazotrophic endophytes. This 
endophytic diazotrophic β-Proteobacterium nitrogen-fixing bacterium has association with important 
agricultural plants such as rice, maize, sorghum, sugarcane and wheat for nitrogen fixation. Stages of H. 
seropedicae actions with crops are bacteria attachment to root surface, colonization of the emergence points in 
secondary roots, penetration through discontinuities of the epidemic tissue, colonization of root xylem, 
aerenchyma end aerial parts along with intercellular spaces occupation, and lipopolysaccharies is involved in 
the communication between bacteria and their hosts like the genus of Agrobacterium, Pseudomonas, and 
Azospirillum. Sinorhizobium meliloti is a Gram-negative soil bacterium which accumulates N-
acetylglutaminyl glutamine amide and trehalose in hyperosmolarity and its survival needs developing active 
adaptive mechanisms quite different in humidity and aridity. The nifA gene of S. meliloti is the most important 
regulator which activates the expression of fix genes and a bunch of nif.  
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