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Abstract 
 
Arbuscular mycorrhizal fungi (AMF) can benefit many plants, but their effects on walnuts are not yet 

known. The present study aimed to analyze the effect of five AMF species, namely, Acaulospora scrobiculata, 
Diversispora spurca, Glomus etunicatum, G. mosseae and G. versiforme on biomass production, chlorophyll 
contents, sugar fraction contents, and mineral element contents of walnut (Juglans regia L.) seedlings. The five 
AMF species colonized roots of walnut, established mycorrhizas in roots and hyphae in soil, and released easily 
extractable glomalin-related soil protein into soil, whilst D. spurca exhibited the best effect. All the AMF 
inoculations, except A. scrobiculata, stimulated shoot and root biomass production. Mycorrhizal fungal 
inoculations collectively increased leaf chlorophyll a, chlorophyll b, and total chlorophyll a+b concentrations, 
and thus promoted leaf sucrose accumulation, which provides an important mycorrhiza-carbon source to roots. 
AMF inoculations conferred a positive effect on leaf N, P, K, Mg, Fe, B, Zn and Cu contents, while they reduced 
leaf Mn contents. These results concluded that AMF were beneficial to the growth and physiological activities 
of walnut, which gives the support for the AMF application in walnut. 
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Introduction 
 
Walnut (Juglans regia L.) is an important economy forest in many countries of the world. Walnut is 

often grown in mountainous areas where the soil is very poor, limiting the yield and physiological activities of 
walnut (Pati and Mukhopadhyay, 2009; Qin et al., 2011; Wang et al., 2016; Bu et al., 2019; Zou et al., 2019; 
Kong et al., 2020). To adapt to the soil environment, plants coexist with soil microorganisms such as arbuscular 
mycorrhizal fungi (AMF) to improve nutrient acquisition (López-Ráez et al., 2010; Latef and Chaoxing, 2011; 
Gill et al., 2016; Wu et al., 2019b, 2020). AMF are a kind of soil inhabiting endophytic fungi, which form 
arbuscular mycorrhizal symbiosis with roots of 80% of land's plants. Arbuscular mycorrhizas are able to 
stimulate nutrient absorption, improve plant growth, and enhance stress tolerance of host plants (Wu et al., 
2013; Adolfsson et al., 2017; He et al., 2019; Moreira et al., 2019; Rosolino et al., 2019; Zhang et al., 2020; Zou 

AcademicPres
Notulae Botanicae Horti

Cluj-NapocaAgrobotanici



Cheng W-J et al. (2020). Not Bot Horti Agrobo 48(4):2021-2031 

 

2022 
 

 

 

 

 

 

et al., 2020; Yang et al., 2021). In switchgrass plants, inoculation with Rhizophagus irregularis improved K, Mg, 
and Na contents in shoots (Sun and Yang, 2019). Native AMF isolated from field citrus significantly 
accelerated P, K, Mg, and Zn contents in leaves of trifoliate orange seedlings (Wu et al., 2019). Mathur et al. 
(2018) reported that R. intraradices, Funneliformis mosseae, and F. geosporum promoted the synthesis of 
chlorophyll probably by increasing Mg uptake. However, Glomus clarum showed a negative effect on Mn 
contents in sour orange (Ortas et al., 2002). Arines et al. (1990) also reported that inoculating G. mosseae or 
G. aggregatum significantly decreased Mn contents in red clover. As a result, more attention should be paid to 
the effect of AMF on nutrient uptake of host plants.  

Earlier studies have shown that the survival of walnut plants in nursery was significantly improved after 
inoculation with G. intraradices or G. mosseae (Dolcet-Sanjuan et al., 1996). G. deserticola also improved leaf 
area and root weight in Juglans nigra (Dixon, 1988). In addition, inoculation with Gigaspora margarita, G. 
deserticola, and G. etunicatum markedly stimulated N, P, and K concentrations in leaves of J. nigra (Dixon, 
1988). Behrooz et al. (2019) found that inoculation with G. mosseae and G. etunicatum alleviated drought 
stress of walnut. These studies indicated that AMF co-exist well with walnut, to promote its growth and to 
enhance stress tolerance. However, the effect of AMF on walnut has been little studied and needs to be further 
explored.  

The aims of the present study were to evaluate the effects of five AMF species from three genera on 
biomass production, chlorophyll concentrations, sugar contents, and mineral element contents of walnut. 

 
 

Materials and Methods 
 
Experimental design 
This experiment was conducted in completely randomized design with six inoculations with 

Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, G. versiforme and non-AMF 
control. Each treatment was replicated six times, resulting in a total of 36 pots. 

 
Plant set-up 
Seeds of Juglans regia L. Liaohe 1 were sterilized with 75% alcohol for 10 min, sowed in autoclaved (0.11 

MPa, 121°C, 2 h) sand, and germinated in an incubator at 28 °C/20 °C (day/night temperature) and 80% 
relative humidity. A month later, one seedling with uniform size and two-leaf-old was transferred into a 2.1-L 
plastic pot that was supplied with 2.1 kg autoclaved soil and sand (3:1, v/v). When the seedlings were 
transplanted, mycorrhizal fungi were inoculated. Five AMF species were Acaulospora scrobiculata Trappe, 
Diversispora spurca (C.M. Pfeiff., C. Walker & Bloss) C. Walker & A. Schüßler, Glomus etunicatum Becker 
& Gerd., Glomus mosseae (Nicolson & Gerd.) Gerd. & Trappe, and Glomus versiforme (P. Karst.) S.M. Berch, 
which were provided by the Bank of Glomales in China (BGC, Beijing, China). These fungi were propagated 
with white clover as the host plant for 3 months under potted conditions. Mycorrhizal fungal inoculums 
consisted of spores, sporocarps, AMF-colonized root segments, soil hyphae, and the growth substrate. For AMF 
inoculation, 100 g of mycorrhizal inoculum was applied to the rhizosphere of potted walnut seedlings. Non-
AMF treatment received 100 g sterilized mycorrhizal inoculum. The seedlings were subsequently placed in a 
greenhouse with 720 μmol/m2/s average photon flux density, 28/20 °C day/night temperature, and 67% 
relative humidity from March to June, 2019. 

 
Parameter determinations 
At harvest time, the growth of walnut seedlings with different treatments showed a significant 

difference. The walnut seedlings were divided into the shoot and the root, and their fresh weight was measured. 
Subsequently, a small amount of root segments with 1-cm-long were stained according to the protocol as 
described by Phillips and Hayman (1970). The root AMF colonization degree was estimated as the percentage 
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of AMF-infected root lengths versus total root lengths. Soil mycorrhizal hyphal length was determined using 
the procedure as outlined by Bethlenfalvay and Ames (1987). Soil easily extractable glomalin-related soil 
protein (EE-GRSP) was assayed by He et al. (2020). 

Leaf chlorophyll a, chlorophyll b, total chlorophyll (chlorophyll a+b), and carotenoid concentrations 
were calculated by Arnon (1949) using the 80% acetone solution.  

Leaf samples were dried to a constant weight in air oven at 75 °C for 48 and ground into 0.5 mm powder, 
which was used for the analysis of sugars and mineral nutrients. Leaf glucose, fructose, and sucrose contents 
were determined by Wu et al. (2015). The sieved leaf samples were digested by H2SO4-H2O2 and subjected to 
chemical analysis by an Electrochemical Analyzer (Smartchem 200) for N contents and by an ICP 
Specmometer (IRIS Advantage) for other mineral element contents.  

 
Statistical analysis 
Data were analyzed using the one-way analysis of variance with the SAS software (SAS Institute, Inc., 

Cary, NC, USA). The Duncan’s Multiple Range Test at the 0.05 level was utilized to compare the significant 
difference among six treatments.  

 
 
Results and Discussion 
 
Changes in mycorrhizal status in roots and soils 
There was not any mycorrhizal colonization found in the roots of the non-AMF-treated seedlings, while 

the root colonization of the seedlings inoculated with A. scrobiculata, D. spurca, G. etunicatum, G. mosseae 
and G. versiforme ranged from 46.0% to 76.4% (Table 1). Similarly, soil mycorrhizal hyphae were not observed 
in the non-AMF seedlings, but in the AMF-inoculated seedlings, varied from 1.30 m/g to 1.65 m/g. Moreover, 
the seedlings colonized by D. spurca, G. etunicatum, G. mosseae and G. versiforme exhibited significantly 
higher soil EE-GRSP concentrations, whereas A. scrobiculata did not significantly alter soil EE-GRSP 
concentrations, compared with non-AMF controls. Among them, mycorrhizal status in soil and root was the 
highest under the condition of D. spurca. As proposed by Davoodian et al. (2012), D. spurca had better 
compatibility with walnut seedlings than others AMF species. Previous studies have demonstrated that root 
AMF colonization was positively correlated with improvement of plant growth and P acquisition (Treseder 
and Kathleen, 2013). García-González et al. (2016) recommended soil EE-GRSP concentration as one 
indicator of mycorrhizal status. The correlation analysis also showed that there was a significant positive 
correlation between root mycorrhizal colonization and soil mycorrhizal hyphal length or soil EE-GRSP 
concentration (Figure 1), which was consistent with previous studies conducted by Curaqueo et al. (2010) and 
Wu et al. (2012). Glomalin is released into the soil to increase soil EE-GRSP concentrations for contributing 
nutrient cycle, when the mycorrhizal hyphae and spores senescenced or died (He et al., 2020; Meng et al., 2020).  

 
Table 1. Root AMF colonization, soil hyphal length, and soil easily extractable glomalin-related soil 
protein (EE-GRSP) of walnut (Juglans regia L. Liaohe 1) seedlings after inoculated with Acaulospora 
scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, G. versiforme, and non-AMF 

AMF treatments Root AMF colonization (%) Soil hyphal length (m/g) Soil EE-GRSP (mg/g) 
A. scrobiculata 54.97±1.76c 1.42±0.12b 0.43±0.04cd 

D. spurca 76.37±6.70a 1.65±0.10a 0.58±0.04a 
G. etunicatum 63.61±5.53b 1.48±0.14ab 0.51±0.04b 

G. mosseae 51.57±0.97cd 1.63±0.10a 0.48±0.04bc 
G. versiforme 46.99±0.68d 1.30±0.10b 0.52±0.04b 

Non-AMF 0±0e 0±0c 0.38±0.03d 
Data (means ± SD, n = 6) followed by different letters above the bars indicate significant differences (P < 0.05) among 
treatments. 
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Figure 1. Linear regression between root mycorrhizal colonization and soil hyphal length or EE-GRSP 
concentration of walnut (Juglans regia L. Liaohe 1) seedlings  
 
Changes in biomass production 
The results of this study showed that the shoot and root biomass was positively impacted by AMF 

colonization (Figure 2). Compared to the non-AMF treatment, shoot and root biomass was significantly 
respectively increased by 54.6% and 42.9% with D. spurca, by 43.1% and 14.3% with G. etunicatum, by 22.7% 
and 6.5% with G. mosseae, and by 26.0% and 28.6% with G. versiforme. Meanwhile, A. scrobiculata did not 
significantly alter shoot and root biomass, and D. spurca exhibited the best promoted effect. Earlier results by 
Giri et al. (2003) showed a significant increase in shoot and root biomass in Acacia auriculiformis plants 
inoculated with G. fasciculatum or G. macrocarpum. In tea plants, mycorrhiza-improved plant biomass 
depended on AMF species (G. etunicatum, D. spurca, G. versiforme, and mixed-AMF) (Shao et al., 2018). Also, 
G. etunicatum, G. mosseae, and a mix-AMF had notably positive effect on biomass of walnut (Behrooz et al., 
2019). Combining these previous results with our study, it can be seen that mycorrhizas could stimulate plant 
biomass production of walnut, dependent on AMF species, whilst D. spurca had the best effect.  

 
Changes in chlorophyll and carotenoid concentrations 
The present study showed that compared to non-AMF control, all the mycorrhizal fungal inoculations 

significantly increased leaf chlorophyll a, chlorophyll b, carotenoid, and total chlorophyll concentration, except 
no changes in carotenoid concentrations between G. versiforme inoculation and non-AMF treatment (Table 
2). Compared with the non-AMF seedlings, chlorophyll a, chlorophyll b, carotenoid, and total chlorophyll 
contents were increased by 36.0%, 38.3%, 28.6%, and 36.1% in A. scrobiculata-inoculated seedlings, by 65.0%, 
68.1%, 57.1%, and 66.0% in G. etunicatum-inoculated seedlings, by 68.0%, 63.8%, 51.4%, and 66.0% in G. 
mosseae-inoculated seedlings, by 53.0%, 53.2%, 51.4%, and 53.1% in D. spurca-inoculated seedlings, and by 
19.0%, 70.2%, 11.4%, and 34.7% with G. versiforme-inoculated seedlings. This result was in agreement with 
Baslam et al. (2013) and, Tuo et al. (2015), and Ekanayake et al. (2015). Chlorophyll and carotenoid have the 
function of absorbing and transmitting luminous energy (Fester et al., 2005). Better chlorophyll levels in 
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mycorrhizal plants are involved in higher photosynthates and N, Fe, and Mg contents in mycorrhizal plants 
(Tuo et al., 2015), as seen in Table 3 and Table 4 in our study.  

 
Figure 2. Shoot and root biomass of walnut (Juglans regia L. Liaohe 1) seedlings after inoculated with 
Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, G. versiforme, and non-
AMF 
Data (means ± SD, n = 6) followed by different letters above the bars indicate significant differences (P < 0.05) among 
treatments.  
 
Changes in leaf glucose, fructose and sucrose contents 
As shown in Table 2, inoculation with AMF had different effects on leaf glucose, sucrose, and fructose 

contents of walnut. After walnut was inoculated with A. scrobiculata, D. spurca, G. etunicatum, G. mosseae, 
and G. versiforme, leaf glucose contents were significantly decreased by 43.9%, 14.7%, 32.2%, 31.4% and 42.7%, 
and leaf fructose contents were reduced by 46.7%, 30.6%, 15.0%, 53.0% and 31.7%, respectively. Inoculation 
of G. mosseae did not affect the glucose content in leaves, whereas inoculation with A. scrobiculata, D. spurca, 
G. etunicatum, and G. versiforme significantly improved leaf sucrose contents by 65.7%, 117.5%, 69.9%, and 
111.4%, respectively. It is known that AMF growth relies on the photosynthate provided by the host plant 
(Pfeffer et al., 2010). AMF can only absorb and utilize hexoses such as glucose from the cleavage of sucrose (Wu 
et al., 2015, 2017). Our result indicated that inoculation of AMF significantly increased leaf sucrose content in 
walnut, and then higher sucrose content in mycorrhizal plants was conducive to the downward transport 
through the phloem to the root system, for the growth of AMF (Sonia et al., 2010). At the same time, AMF 
also dramatically reduced leaf glucose and fructose contents of walnut, because the presence of root mycorrhizal 
carbon pool required a large amount of glucose. 
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Table 2. Leaf chlorophyll fractions (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid) and 
sugar fractions (glucose, fructose, and sucrose) contents of walnut (Juglans regia L. Liaohe 1) seedlings after 
inoculated with Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, G. 
versiforme, and non-AMF 

AMF 
treatments 

Chlorophyll contents (mg/g FW) Sugar contents (mg/g DW) 

Chlorophyll a Chlorophyll b Carotenoid 
Total 

chlorophyll 
Glucose Fructose Sucrose 

A. 
scrobiculata 

1.36±0.11c 0.65±0.04c 0.45±0.03b 2.00±0.11c 37.08±2.25d 83.29±11.11c 177.78±7.39b 

D.  
spurca 

1.53±0.10b 0.72±0.06bc 0.53±0.04a 2.25±0.10b 56.41±4.44b 108.53±7.25c 233.42±3.74a 

G. 
etunicatum 

1.65±0.14ab 0.79±0.03a 0.55±0.04a 2.44±0.15a 44.88±3.18c 132.85±7.44b 182.39±7.31b 

G.  
mosseae 

1.68±0.10a 0.77±0.07ab 0.53±0.05a 2.44±0.06a 45.37±3.71c 73.42±6.81d 113.25±9.05c 

G.  
versiforme 

1.19±0.04d 0.80±0.07a 0.39±0.03c 1.98±0.10c 37.90±4.16d 106.77±8.50c 226.84±39.20a 

Non-AMF 1.00±0.05e 0.47±0.04d 0.35±0.03c 1.47±0.06d 66.15±3.53a 156.28±5.66a 107.32±13.83c 

Data (means ± SD, n = 4) followed by different letters above the bars indicate significant differences (P < 0.05) among 
treatments.  

 
Table 3. Leaf mineral element contents of walnut (Juglans regia L. Liaohe 1) seedlings after inoculated 
with Acaulospora scrobiculata, Diversispora spurca, Glomus etunicatum, G. mosseae, G. versiforme, and 
non-AMF 

AMF 
treatments 

N 
(mg/plant) 

P (mg/plant) 
K 

(mg/plant) 
Ca 

(mg/plant) 
Mg 

(mg/plant) 
Fe (µg/plant) B (µg/plant) 

Zn 
(µg/plant) 

Cu 
(µg/plant) 

Mn 
(µg/plant) 

A. 
scrobiculata 

65.76±4.75b 3.41±0.12d 59.10±4.54b 
56.91±4.81c

d 
10.15±
0.46ab 

1.47±0.15b 
259.08 
±9.07b 

178.74±16.4
9b 

782.62±18.8
9c 

583.42±10.1
3a 

D. spurca 80.44±3.12a 6.38±0.51a 65.58±5.94a 78.94±4.65a 
10.36±
0.99ab 

2.71±0.17a 
391.90±38.4

2a 
196.20±16.8

4b 
439.19±34.6

9d 
510.50±38.4

5b 

G. 
etunicatum 

75.76±6.13a 4.73±0.44b 69.90±4.79a 67.17±4.14b 
11.13±

0.79a 
1.67±0.08b 

209.53±12.3
2c 

188.61±15.0
5b 

1057.17±58.
60a 

453.58±39.7
6c 

G. mosseae 
59.87±1.43b

c 
4.11±0.19c 52.35±2.97c 66.27±2.58b 9.43±1.43b 1.70±0.14b 

217.31±4.16
c 

292.10±14.3
0a 

978.60±43.8
3b 

504.59±8.59
b 

G. 
versiforme 

75.67±4.45a 3.92±0.32c 48.39±2.22c 52.57±3.16d 
9.82±
0.70ab 

2.74±0.22a 
232.46±17.2

9bc 
197.88±12.1

4b 
440.05±25.1

8d 
467.17±23.9

0bc 

Non-AMF 56.42±5.14c 2.84±0.19e 39.86±3.61d 58.60±0.79c 7.48±0.23c 1.17±0.11c 
115.84±10.4

1d 
99.62±9.47c 

327.00±17.6
0e 

611.32±31.3
4a 

Data (means ± SD, n = 4) followed by different letters above the bars indicate significant differences (P < 0.05) among 
treatments. 

 
Changes in leaf nutrient contents 
AM symbiosis plays an important role in improving nutritional acquisition of host plants (Hodge et al., 

2010). Compared with non-AMF inoculation, inoculation with different AMF species notably improved leaf 
K and P content (Table 3), whilst the greatest effect was found in G. etunicatum for K improvement and D. 
spurca for P improvement among five AMF treatments. Previous studies have shown that AMF-improved K 
and P contents were dependent on host plant species, AMF species, and soil environment (Diop et al., 2003; 
Veresoglou et al., 2011; Kilpeläinen et al., 2020). The reason why AMF promote K and P absorption of host 
plants may be due to the fact that mycorrhizal extraradical hyphae can extend into the soil inaccessible to the 
root system. In addition, AMF up-regulated mycorrhiza-specific P transporter genes to promote the P 
absorption by cells (Amijee et al., 1989). The mycorrhizal extraradical hyphae directly secretes phosphatase and 
indirectly promotes the root system to secrete organic acid to hydrolyze organophosphorus to inorganic 
phosphorus, all of these ways promote the uptake of P by plants (Duan et al., 2015; Perumalsamy et al., 2017).  

In the present study, except that the G. mosseae treatment did not affect leaf N concentrations, the other 
AMF inoculations notably increased leaf N concentrations, compared to non-AMF control (Table 3). Herein, 
D. spurca inoculation exhibited the highest effect. A similar result is also found in the maize infected with G. 
intraradices, Acaulospora laevis, and Gigaspora margarita (Frey and Hannes, 1993) and white clover (Xie et al., 
2020). It has been suggested that in AM plants, ammonium nitrogen was mainly absorbed by extraradical 
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hyphae and then synthesized into arginine, which was moved to the intraradical hyphae into urea and 
ornithine; the ornithine was catalyzed into amino acids and then proteins in root cells (Bago et al., 2001; 
Govindarajulu et al., 2005; Jin et al., 2005; Johansen and Olsson, 2006; Xie et al., 2020). 

All the AMF treatments significantly promoted leaf Ca, Mg, B, Fe, Zn, and Cu contents, except the 
reduction of Ca after G. versiforme treatment. Hereinto, D. spurca had the best promotion on Ca and B 
content, G. etunicatum had the strongest positive effect on Mg and Cu contents, G. versiforme had the best 
promotion on Fe, and G. mosseae had the best acceleration on Zn content. The important role of the soil AMF 
mycelium in absorbing mineral elements has been well documented (Labidi et al., 2015; Weisany et al., 2016; 
Tran et al., 2019; Wu et al., 2019). Earlier studies also showed that AMF had negative effects on Mn content 
(Arines et al., 1990; Liu et al., 2000). We also found the negative effect on leaf Mn content after AMF 
inoculation, except A. scrobiculata. The reduction of Mn under mycorrhization is mainly because AMs reduce 
the amount of manganese reductants (Liu et al., 2000). Among five AMF species, D. spurca and G. etunicatum 
showed better promotion on Ca, Mg, B, Fe, Zn and Cu acquisition than other AMF species, which is in line 
with the corresponding root mycorrhizal colonization. 
 

 
Conclusions 
 
Mycorrhizal fungi could colonize roots of walnut and also positively accelerated shoot and root biomass 

production and improved physiological activities with regard to leaf chlorophyll production, leaf sucrose 
accumulation, and leaf nutrient acquisition (e.g., P, K, Mg, B, Fe, Zn, and Cu), dependent on AMF species. 
Hereinto, Diversispora spurca represented the best effect. These results provide critical support for the 
application of AMF in walnut in the future.  
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