DNA Barcoding in Selected Species and Subspecies of Rye (Secale) Using Three Chloroplast Loci (matK, rbcL, trnH-psbA)

Lidia SKUZA1,2*, Izabela SZUĆKO1,2, Ewa FILIP1,2, Anastazja ADAMCZYK1

1University of Szczecin, Faculty of Biology, Institute for Research on Biodiversity, Department of Cell Biology, Wąska 13, 71-415 Szczecin, Poland; lidia.skuza@usz.edu.pl (*corresponding author); izabela.szucko@usz.edu.pl; ewa.filip@usz.edu.pl; anastazja.ada@gmail.com
2Centre for Molecular Biology and Biotechnology, Wąska 13, 71-415 Szczecin, Poland

Abstract

DNA barcoding is a relatively new method of identifying plant species using short sequences of chloroplast DNA. Although there is a large number of studies using barcoding on various plant species, there are no such studies in the genus Secale. In this study the plant material consisted of 10 cultivated and non-cultivated species and subspecies of rye genus. Three chloroplast DNA regions (rbcL, matK, trnH-psbA) were tested for their suitability as DNA barcoding regions. Universal primers were used, and sequenced products were analyzed using Neighbor Joining and the Maximum Likelihood in the MEGA 7.1 program. We did not observe high variability in nucleotide sequences within the matK and rbcL regions. Only 2.2% of the sequences showed polymorphism in the rbcL region, while 6.5% in the matK region. The most variable trnH-psbA (15.6%) intergenic region was the most useful for rye barcoding. Individual application of the studied regions did not provide the expected results. None of the regions used in the study allowed the division of rye species and subspecies according to the adopted classification of the genus Secale. The results confirm that the use of matK and rbcL is insufficient for DNA barcoding in rye species, and better discrimination within the genus Secale can be obtained only in combination with the non-coding trnH-psbA sequence. Our results also indicate the necessity of using a different region. All of the new sequences have been deposited in Genbank.

Keywords: barcoding DNA; rye; cpDNA; intergenic spacer

Introduction

Rye (Secale cereale L.) belongs to the tribe Triticeae from the Poaceae (grass) family and is related to bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). It has the largest genome (~7.9 Gbp) among all diploid Triticeae, containing over 90% of repetitive sequences (Bartoš et al., 2008; Bauer et al., 2017). Rye crop (Secale cereale L.) is a rich and important source of valuable genes encoding, e.g., high protein content, resistance to diseases as well as morphological and biochemical traits that increase triticale value (×Tritosecale Wittmack) (Kubicka et al., 2006). Rye, as compared to other cereals, is distinguished by its exceptional cold tolerance and higher yields from wheat and barley in poor and moderate soils and under drought stress conditions (Schittenhelm et al., 2014). Translocations from rye genome are present in many cultivars of wheat grown all over the world, thanks to which wheat is characterized by better stress tolerance caused by both abiotic and biotic factors (Rabinovich, 1998). In addition, rye is a difficult object of genetic and breeding studies. The reason is the open-pollination, self-incompatibility and the relationship between heterozygosity and productivity, which arises as a result of inter-chromosomal gene interactions (Schlegel, 2006).

Recently, the species of cultivated rye has been fully sequenced (Bauer et al., 2017), which will certainly have a positive effect on large-scale functional analyses as well as rye genetic modification for sustainable plant production. However, the task of modern cereal breeding is still to obtain new, better yielding cultivars, characterized by high resistance to diseases, pathogens and unfavourable abiotic conditions. Progress in rye breeding has been unfortunately significantly slowed down and limited, because the cultivars used in cultivation are characterized by limited variability due to continuous selection and attempts to use old cultivars proved to be ineffective. The wild rye species and
subspecies are an excellent starting material for research aimed at expanding the recombination variability in the *Secale cereale* L. species. They are, due to their genetic distinctiveness and high trait expression, a valuable source of genes, in which our cultivars are poor (Rzepka-Plevněš, 1990).

Disease-resistance genes, e.g., to downy mildew or brown rust, resistance to pre-harvest sprouting (Rzepka-Plevněš, 1993; Rzepka-Plevněš and Tomczak, 1993) and lodging (Rzepka-Plevněš, 1993) are sought in wild species (*S. vavilovii, S. sylvestre, S. montanum, ssp. montanum* and *S. kaprijanovii*) (Rzepka-Plevněš, 1990). *S. anathollicum* is used for breeding cultivars with increased grain protein content and cultivars for the green mass. Wild rye species are also a source of male sterility genes (Stracke, 2003).

Generation of interspecific hybrids is currently often successful, however, their yield and quality pose problems (Rzepka-Plevněš, 1993). In addition, hybrids produced are not suitable for cultivation, they require many years of backcrossing with cultivated rye to restore functional traits. These difficulties cause that despite many years of research, wild rye species are still under-utilized as a source of desired genes and there are no reports on the genetic structure of these species in the world literature.

The introduction of DNA barcoding was a breakthrough in species identification methods. The basis of this technique is the use of a very short, defined genomic sequence that allows obtaining a DNA barcode – an image of base pair sequence in the DNA fragment that can be compared to determine individual species classification (Ajmal et al. 2014; Skuza et al., 2015). The gene encoding cytochrome oxidase (*COI, cosI*), subunit of 648 bp, located in the mitochondrial genome is the best gene used for barcoding in animals (Stoeckle and Thaler 2014). The *COI* gene has also been shown to be effective in identifying birds, fish, butterflies, flies, bats and many other animal groups. However, among plants, the mitochondrial genome could not be used due to the different evolution of this genome in plants as well as the possibility of plant interbreeding – the possible presence of mitochondria from different species in one plant (Hollingsworth et al., 2011). Research conducted by the group working on plant barcoding (CBOL Plant Working Group, 2009), which compared several different sets of genes potentially useful for barcoding, found that the best and most reliable results are obtained for chloroplast genes: *matK*, encoding matK, rbcL, encoding the large subunit of RuBisCO (Hollingsworth et al., 2011). As a result, various fragments of the chloroplast genome have been proposed as plant barcodes. They were selected from 4 coding regions: *matK, rbcL, rpoB, rpoC1* and from the pool of non-coding fragments: *atpF-atpH, trnH-psbA, psbK-psbl* (Hollingsworth et al., 2009), *trnL, trnL-trnF* and *trnK intron/matK* (Bellstedt et al., 2001; Ge et al., 2002; Klak et al., 2003; Muehner et al., 2003; Samuel et al., 2003).

Eventually, the group of potential plant barcodes was narrowed down to *matK* and *rbcL* genes and to the non-coding *trnH-psbA* region. Thorough research on the effectiveness of species identification and the ease of obtaining the sequence of each potential barcode was carried out. None of these regions alone met all the requirements of DNA barcoding, therefore, in contrast to animals in which the barcode region consists of only one locus (*cox1*), it was decided to use a barcode consisting of two loci in plants, i.e., *matK* and *rbcL* (Hollingsworth et al., 2009). The *rbcL* and *trnH-psbA* pair provided very good results, but due to difficulties in amplification and subsequent assembly of the *trnH-psbA* intergenic region sequence, a pair consisting of two coding regions was selected for the official plant DNA barcode: *rbcL + matK* (Kress and Erickson, 2007; Hollingsworth et al. 2009).

Plastid DNA is widely used as a marker of choice in phylogenetic and phylogeographical studies, however, little is known about its usefulness in analyzing the relationships between closely related species. The slow rate of cpDNA-specific evolution hinders taxonomic analyses at lower levels, especially at the population level. In addition, studies clearly indicate that the utility in phylogenetic analyses of different cpDNA non-coding regions within a given taxonomic group can vary enormously (Sang et al., 1997; Xu et al., 2000; Hartmann et al., 2002; Hamilton 2003; Sakai et al., 2003), and the selection of the appropriate cpDNA region is often difficult due to the lack of information about the rate of evolution between different non-coding cpDNA regions.

Given the above, the aim of our research was to: i) investigate whether the three cpDNA regions, which were previously proposed as barcoding tools for various angiosperms: *rbcL* and *matK* genes, and the intergenic *trnH-psbA* region, can be used as barcodes to distinguish representatives of rye species and subspecies and ii) assess the value of phylogenetic information provided by these markers.

Materials and Methods

Plant material

The plant material consisted of 10 cultivated and non-cultivated species and subspecies of rye genus, obtained from several world collections (Center for Biological Diversity Conservation in Powsin-Warsaw, Poland; United States Department of Agriculture - Agricultural Research Service, USA; Nordic Genetic Resource Center, Sweden) (Table 1).

DNA extraction, PCR amplification and sequencing

The probes of genomic DNA were isolated from 10 randomly chosen fresh leaves of 6 to 7-day-old etiolated plants. The leaves were ground with liquid nitrogen, producing ~100 mg of fine powder. The isolation was performed using FastDNA® Green SPIN Kit (DNAeasy Plant Mini Kit–Wizard® Genomic DNA, Promega). Both quality and concentration of the DNA were assessed by agarose gel electrophoresis and spectrophotometry (NanoDrop 2000, Thermo Scientific).

The reaction was carried out in duplicate by way of PCR analyses which were performed in a T100™ Thermal Cycler (Bio-Rad) in the final volume of 20 µl. The single PCR reaction mixture contained: 1x DreamTaq Buffer, 0.2 mM dNTP, 0.1 µM of each primer, 50 ng genomic DNA and 1 U DreamTaq DNA Polymerase (Thermo Scientific).

The primers used for amplification of *rbcL* were *rbcL1f: ATGTCACCAAAACAGAACA* and *rbcL724r: TCG
CATGTACCCTGCAGTAGC; for matK were matK 390F: CGATCTATTCAAATATTCT, matK1326 R: TCTAGCAGCGAAAGTCAAGT, while the primers used for amplification of trnH-psbA were psbA3′F: GGTATGCAAGCATTGCT, trnH805: CGCG CAGTGGGATTCAAATCC (Parmentier et al., 2013). The primers were synthesized in the Laboratory of DNA Sequencing and Synthesis of IBB PAN Genomed S.A. (Warsaw).

The following thermal reaction profile was used to amplify the rbcL and trnH-psbA regions: initial denaturation at 95 °C for 3 min followed by 33 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, extension of the primer at 72 °C for 1 min and a final extension of 72 °C for 10 min. The following thermal reaction profile was used to amplify the matK region: initial denaturation at 95 °C for 3 min, then 40 cycles including denaturation at 95 °C for 30 s, annealing at 49 °C for 30 s, primer extension at 72 °C for 1 min and final extension at 72 °C for 10 min. The conditions and profiles of PCR reactions have been optimized accordingly.

PCR products were checked by electrophoresis in 1.5% (m v−1) agarose gel containing ethidium bromide and a TBE buffer (pH 8.0); the gels were visualized under UV. The gel was analyzed and archived using the Molecular Imager® GelDoc–XR software. Bands were scored and analyzed with the Quantity One software (Bio-Rad). The size of the products was determined by comparison with a DNA ladder (MassRuler, Thermo Scientific). The purified PCR products were sequenced on both strands by Genomed (Poland) using the PCR primers. The sequences reported in this paper have been deposited in the GenBank nucleotide sequence database with the accession numbers MG905722-MG905751 (Table 1).

Barcoding analyses

The analyzed dataset consisted of 36 nucleotide sequences: 30 resulted from DNA sequencing experiments performed during this study and 6 were received from GenBank. At first the forward and reverse sequences were edited and consensus sequences were obtained using Basic Local Alignment Tool software. ClustalW and Mega7.1 software were used to perform multiple sequence alignments.

The genetic variability of each marker was described by the total alignment length (bp); the number of monomorphic sites; the number of polymorphic sites; the percentage of polymorphic and monomorphic sites; the number of singleton variable sites; the number of parsimony informative sites (PIC), nucleotide diversity (Pi); the number of haplotypes and the average G+C contents in each region using DnaSP6.10.01.

The barcoding analyses were conducted separately for each region and combined in the following arrangement: coding region (matK+ rbcL) and plastid genome regions (matK+rbcL+ trnH-psbA).

The resolution of each locus was evaluated by the Neighbor Joining (NJ) trees and the Maximum Likelihood (ML) trees which were built with Mega 7.1 software. Tamura-3 parameter model was determined for each locus. The reliability branching was tested using the bootstrap method with 1000 replications in the NJ and ML analyses.

The outgroup consisted of the chloroplast genome sequences obtained from *Avena sativa* (NC_027468.1) and the in-group consisted of sequences obtained from *Triticum turgidum* (KJ614402.1).

Results

As a result of PCR reactions and sequencing, the number of matK and rbcL gene sequences as well as the trnH-psbA intragenic region sequences, which are used to refine the barcoding analysis, were obtained. All the new sequences have been deposited in GenBank under accession numbers. Twelve nucleotide sequences were analyzed for each of the loci: matK, rbcL and trnH-psbA. The matK gene had the longest sequence (832 bp) and the trnH-psbA intragenic region the shortest (589 bp) based on the multiple alignments of all sequences obtained from the analyzed regions (Table 2). The average GC content was 33.6% for matK, 43.8% for rbcL and 35.7% for trnH-psbA. The trnH-psbA region was the most variable sequence, as it was characterized by variability at the level of 81.5%, while the least variable was the rbcL region - 97.8%. The rbcL region was characterized by a small number of haplotypes (3) and no parsimonious informative sites were observed due to its high level of monomorphism. Similarly, the trnH-psbA region was characterized by the greatest

Table 1. The list of plant species, origin, accession number, type, life cycle and sequence accessions number included in the study

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>Accession number</th>
<th>Type</th>
<th>Life cycle</th>
<th>matK accession no.</th>
<th>rbcL accession no.</th>
<th>trnH-psbA accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. cereale ssp. afghanicum</td>
<td>Armenia</td>
<td>PI618662</td>
<td>We</td>
<td>A</td>
<td>MG905723</td>
<td>MG905722</td>
<td>MG905724</td>
</tr>
<tr>
<td>S. cereale ssp. anecrate</td>
<td>USA</td>
<td>PI445976</td>
<td>We</td>
<td>A</td>
<td>MG905750</td>
<td>MG905749</td>
<td>MG905751</td>
</tr>
<tr>
<td>S. cereale ssp. cereale</td>
<td>Canada</td>
<td>PI590948</td>
<td>C</td>
<td>A</td>
<td>MG905735</td>
<td>MG905734</td>
<td>MG905736</td>
</tr>
<tr>
<td>S. cereale ssp. segetale</td>
<td>Azerbaijan</td>
<td>PI267102</td>
<td>We</td>
<td>A</td>
<td>MG905741</td>
<td>MG905740</td>
<td>MG905742</td>
</tr>
<tr>
<td>S. cereale ssp. redivum</td>
<td>Turkey</td>
<td>PI618669</td>
<td>We</td>
<td>A</td>
<td>MG905759</td>
<td>MG905758</td>
<td>MG905758</td>
</tr>
<tr>
<td>S. strictum ssp. africanum</td>
<td>Poland</td>
<td>6065</td>
<td>Wi</td>
<td>P</td>
<td>MG905787</td>
<td>MG905786</td>
<td>MG905787</td>
</tr>
<tr>
<td>S. strictum ssp. mattockianum</td>
<td>USA</td>
<td>PI445973</td>
<td>Wi</td>
<td>P</td>
<td>MG905729</td>
<td>MG905728</td>
<td>MG905730</td>
</tr>
<tr>
<td>S. strictum ssp. strictum</td>
<td>Iraq</td>
<td>PI253956</td>
<td>Wi</td>
<td>P</td>
<td>MG905744</td>
<td>MG905743</td>
<td>MG905745</td>
</tr>
<tr>
<td>S. ehrissii</td>
<td>Hungary</td>
<td>PI288842</td>
<td>Wi</td>
<td>A</td>
<td>MG905750</td>
<td>MG905749</td>
<td>MG905751</td>
</tr>
<tr>
<td>S. silvestre</td>
<td>Poland</td>
<td>PI618676</td>
<td>Wi</td>
<td>A</td>
<td>MG905747</td>
<td>MG905746</td>
<td>MG905748</td>
</tr>
</tbody>
</table>

C: cultivated, Wi: wild, We: weedy, A: annual, P: perennial.
polymorphism, hence the number of haplotypes was the highest (6) and 5 PICs were observed. The intergenic region was also characterized by the highest Pi coefficient -0.03, and the lowest one was found for the *rbcL* gene sequence -0.004 (Table 2).

Phylogenetic NJ and ML trees were constructed based on sequence analysis of 3 regions and their combinations. No differences were observed in the topology of trees constructed using the aforementioned algorithms. Their degree of sampling (bootstrap) was the only difference.

There was no high variability in nucleotide sequences within the *matK* and *rbcL* regions. Only 2.2% of the sequences showed polymorphism in the *rbcL* region, while 6.5% in the *matK* region. Considering the above, the *rbcL* gene was characterized by insufficient sequence variation to be used to distinguish rye species and subspecies analyzed by the authors (Fig. 2). In turn, it could be observed that *Secale cereale* ssp. *ancestrale* was slightly different from the other analyzed species/subspecies of rye, thanks to the analysis trees’ topology of *matK* sequences (Fig. 1). This species clustered on a separate branch. It could also be observed that the taxon *Secale cereale* ssp. *ancestrale* is distant from the others in the trees obtained using the *matK+rbcL* combination (Fig. 4). A different length of the *Secale sylvestre* branch was also recorded, which might have been caused by a genetic change between the remaining rye species, but not sufficiently different that it could be separated from the other 8 rye species or subspecies.

The *trnH-psbA* region was characterized by the highest polymorphism -15.6%, thus the trees obtained based on the sequences of this region also most highly discriminated the material analyzed by the authors. The analyzed species/subspecies were divided into two similarity groups. Within the first group, two subgroups were distinguished, clustered on separate branches: i) *Secale cereale* ssp. *afghanicum* and the second more numerous; ii) *Secale cereale* ssp. *ancestrale*, *Secale cereale* ssp. *cereale*, *Secale cereale* ssp. *rigidum*, *Secale cereale* ssp. *segetale* and *Secale strictum* ssp. *africanum*. Two subgroups were additionally distinguished on separate branches in the second group: i) *Secale sylvestre* and *Secale strictum* ssp. *anatolicum* and ii) *Secale vavilovii* and *Secale strictum* ssp. *strictum* (Fig. 3).

The use of the *matK* and *rbcL* combination with *trnH-psbA* increased the efficiency of the barcode analysis. This was due to the fact that the *trnH-psbA* region was characterized by a high genetic variability in closely related taxa analyzed in the above experiments. The analyzed species/subspecies were divided into two similarity groups,

Table 2. Molecular characteristic of the three chloroplast *loci* evaluated for genus *Secale*

<table>
<thead>
<tr>
<th>Barcode</th>
<th>Total alignment length (bp)</th>
<th>Number of monomorphic sites</th>
<th>Number of polymorphic sites</th>
<th>Number of parsimony informative sites (PIC)</th>
<th>Number of singleton variable sites</th>
<th>Number of haplotypes</th>
<th>Nucleotide diversity (Pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>matK</td>
<td>832</td>
<td>778</td>
<td>54</td>
<td>2</td>
<td>52</td>
<td>5</td>
<td>0.011</td>
</tr>
<tr>
<td>rbcL</td>
<td>624</td>
<td>610</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>3</td>
<td>0.004</td>
</tr>
<tr>
<td>trnH-psbA</td>
<td>589</td>
<td>480</td>
<td>92</td>
<td>5</td>
<td>87</td>
<td>6</td>
<td>0.030</td>
</tr>
</tbody>
</table>
in which subgroups were distinguished. Three similar
subgroups were identified in the first group: i) Secale
vavilovii; ii) Secale cereale spp. ancestrale; iii) Secale
sylvestre, Secale cereale ssp. rigidum, Secale strictum ssp. strictum and
Secale cereale ssp. segetale. Two subgroups were identified in
the first group: i) Secale cereale ssp. Afghanicum and Secale
cereale ssp. cereale; ii) Secale strictum ssp. africanum and
Secale strictum ssp. anatolicum (Fig. 5).

Discussion

According to the CBOL plant working group, an ideal
DNA barcode needs to have the following features: capacity
of amplification with universal primers, high amplification
and sequencing efficiency, and genetic variation that is
sufficiently high to distinguish sequences at the species level,
but also sufficiently conservative among individuals of the
same species (Hebert et al., 2003; Cowan et al., 2006;
CBOL Plant Working Group, 2009).

Evaluation of universal applicability by PCR
quantification and sequencing success is the first step in
determining the suitability of a given DNA fragment as a
barcode.

In this respect, all analyzed regions (matK, rbcL and
trnH-psbA) amplified effectively, which allowed for simple
and high-quality sequencing.

The amplification of the trnH-psbA region was also
successful, despite the fact that many authors reject this
region as a barcode because of its length (>1000 bp) and
difficulties in bi-directional sequencing (CBOL Plant
Working Group, 2009; Hollingsworth et al., 2009). The
amplicons obtained in our experiments were shorter (about
600 bp), which allowed for effective sequencing. Similar
results were obtained for other groups of terrestrial
plants, where the amplification of the trnH-psbA region and
the sequencing quality was sufficiently high to consider it a
barcode (Kress et al., 2009; Tripathi et al., 2013; Bieniek
et al., 2015; Su et al., 2016).

In turn, many studies have indicated that matK is a key
marker discriminating specific groups (Newmaster et al.,
2009; De Mattia et al., 2011), although many authors
questioned the usefulness of this gene as a barcode due to
poor amplification and sequencing efficiency and problems
related to primers’ universality (Sass et al., 2007; Roy et al., 2010; Kelly et al., 2010; Du et al., 2011; Yan et al., 2011; Theodoridis et al., 2012). The research presented in the study indicates that despite PCR and sequencing efficiency, unfortunately, this region can not be considered as an effective rye barcode. Analyses involving this sequence showed only 6.5% polymorphism in the studied taxa.

However, in terms of molecular variability, rbcl was the most conservative sequence among the three analyzed regions, as indicated by the lowest number of polymorphic sites and the obtained haplotypes (Fig. 2). This was also confirmed by other authors (Fazekas et al., 2008; Zimmermann et al., 2013; Bolson et al., 2015; Bieniek et al., 2015; Gamache and Sun, 2015).

Phylogenetic analysis is one of the most effective methods to determine the suitability of a DNA region as a barcode, because it should detect species-specific clusters. Unfortunately, it is complicated in rye, because the phylogenetic relationships between Secale species remain unclear, despite the large number of analyses. A division of the genus Secale even into 15 different species has been adopted (Delipavlov 1962), while Frederiksen and Petersen (1998) recognized only three Secale species: Secale sylvestre, Secale strictum and S. cereale. The classification system of the American Germplasm Resources Information Network (GRIN, http://www.arsgrin.gov) currently includes four species in the genus Secale: annual S. cereale L., annual S. sylvestre Host and S. vavilovii Grossh and perennial S. strictum (Presl.) Presl. (syn. S. montanum) (Spencer and Hawkes 1980; DeBustos and Jouve 2002). Moreover, S. cereale also comprises 8 subspecies, S. strictum - 5, and S. cereale sp. cereale is the only cultivated species.

The differences in the classification of the genus Secale result from the use of various experimental methods, such as isoenzyme analyzes (Vences et al. 1987a,b), RAPD (Del Pozzo et al., 1995), ITS rDNA analyses (Reddy et al. 1990; Cuadrado and Jouve 2002), thin-layer chromatography (Dedio et al. 1969), ITS rDNA region length analyses (Reddy et al. 1990), restriction fragment length polymorphism (RFLP) of the chloroplast genome (Murai et al. 1989) and cpDNA variation analyses (Petersen and Doebly 1993), microsatellite sequence analyses (Shang et al., 2006), but also traditional morphological and cytogenetic methods.

None of the regions used in the study allowed the division of rye species and subspecies according to the adopted classification of the genus Secale. The rbcl region did not differentiate the analyzed taxa (Fig. 2), because the obtained sequences were very similar, with only 14 polymorphic sites (Table 2).

Similar results were obtained by Gamache and Sun (2015), who identified species from the genus Pseudoroegneria. As regards the genus Panicum, the rbcl gene alone was also insufficient to identify individual species, similarly as the matK gene (Zimmermann et al., 2013). Only the combination of results of these two regions was sufficient for analysis. In turn, Zhang et al. (2011) showed that individual plant species can be distinguished by analyzing this region (including Arabidopsis thaliana, Oryza sativa subsp. japonica or Zea mays). This region also demonstrated reasonably good effectiveness at lower taxonomic levels in Hordeum (Bieniek et al., 2015; Gamache and Sun, 2015). Bieniek et al. (2015) identified Hordeum bulbosum or H. bogdani using the rbcl region.

Our research shows that the matK gene sequences are also highly similar in the analyzed taxa (54 polymorphic sites have been identified) and allow only the identification of Secale cereale ssp. ancestrale. Bieniek et al. (2015) obtained different results, demonstrating significant species identification capacity, but also for the genus, using the matK gene alone in the genera Elymus, Lophostyphum, Pseudoroegneria and Thinopyrum. Similarly, the identification of species of the genus Panicum using the rbcl and matK genes individually discriminated species, despite the low number of SNPs (Hunt et al., 2014). These results are in contradiction with the study of Zimmerman et al. (2013) in relation to the genus Panicum. This might result from a larger number of species selected for analysis – 9 (Zimmerman et al., 2013) and 24 (Hunt et al., 2014), respectively.

The intergenic trnH-psbA region demonstrated the highest species identification capacity in our study among all 3 regions used autonomously. Six haplotypes were distinguished, however, sequence analysis of this region allowed to identify rye only at the species level. This region was insufficient for the identification of rye to subspecies among S. cereale and S. strictum species (Fig. 3).

Only the combination of matK and rbcl with trnH-psbA increased the efficiency of barcode analysis, although in this case there were also some discrepancies with the adopted classification (Fig. 5).

S. cereale ssp. cereale species were dispersed within both groups, S. vavilovii species was in the S. cereale, S. strictum and S. sylvestre species group (NJ), or S. cereale and S. africanum, Secale strictum ssp. anatolicum. The result of our analysis was partly consistent with the classification of Frederiksen and Petersen (1998), who identified only three species within the genus Secale: S. sylvestre, S. strictum and S. cereale and included S. vavilovii to S. cereale. Similarly, Bolibok-Brągoszewska et al. (2014) classified S. vavilovii as a subspecies of S. cereale. Shang and et al. (2006) reached similar conclusions, indicating high similarity between these species.

S. sylvestre is highly similar to S. cereale ssp. segetale. This was confirmed by previous results (Skuza et al., 2007) obtained in the RFLP analysis of mitochondrial genes. However, the obtained results were not consistent with the current classification of the genus Secale based on many nuclear molecular markers. Although Ren et al. (2011) did not classify S. sylvestre as a separate group, nevertheless, they claimed, on the basis of their research, that it was more related to S. strictum ssp. africanum and S. strictum ssp. anatolicum.

In turn, Bolibok-Brągoszewska et al. (2014) classified S. sylvestre to a separate taxon. Ren et al. (2011) obtained different results based on microsatellite analysis. They showed similarity of S. sylvestre to S. strictum ssp. africanum and anatolicum. Skuza et al. (2007) in turn classified S. sylvestre together with S. cereale ssp. segetale based on mtDNA analysis.
S. sylvestre along with S. vavilovii are the only species that do not generate hybrids, although both are annual and self-pollinating (Singh, 1975). These results would support the suggestion of Khush (1962) that S. sylvestre should be placed in a separate silvestria section. However, the research carried out in the present work suggests that this species should be included together with S. segetale.

Our results partially confirmed the very close relationship between S. sylvestre and S. segetale species and also supported the exclusion of S. vavilovii as a separate species.

The strictum species group is heterogeneous and shows similarity to S. cereale ssp. ancestrale similarly to the work of Ren (2011) and to S. afghanicum. The analysis showed low similarity of S. strictum ssp. africanum and S. strictum ssp. strictum species, contrary to the currently adopted classification. However, they are consistent with the ISSR analyses, indicating a close relationship between S. strictum ssp. africanum and S. strictum ssp. anatolicum (Ren et al., 2011). Genetic diversity in the evolutionary process was lower in the strictum group than between perennial and annual forms and species. In addition, it has been shown that perennial forms are morphologically similar and cross easily to form hybrids (Spencer and Hawkes 1980).

Conclusions

The present study is the first to analyze selected rye species and subspecies, in which the usefulness of the combinations of the plastid rbcL and matK coding regions and intergenic trnH-psbA region for DNA barcoding was assessed. The results confirm that the use of matK and rbcL is insufficient for DNA barcoding in rye species, and better discrimination within the genus Secale can be obtained only in combination with the non-coding trnH-psbA sequence. Our results also indicate the need to use a different region, e.g., the previously proposed ITS2 supported by the intergenic trnH-psbA region, in order to correctly identify rye species (Chen et al., 2010; Roy et al., 2010).

References

