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Abstract 

The design of the machines and equipment used in harvest and post-harvest processing should be compatible with the 
physical, mechanical and rheological characteristics of the fruits and vegetables. In machine design for agricultural products, 
several characteristics of relevant products and seeds should be known ahead. Designers can either measure all these design 
parameters one by one, or they may use intelligent systems to estimate such parameters. Neural networks (NNs) are new 
computational tools that provide a quick and accurate means of physical properties prediction of agricultural materials, and 
have been shown to perform well in comparison with traditional methods. In this research, some physical properties of 
pumpkin (Cucurbita pepo L.) seeds, including linear dimensions, volume, surface and projected area, geometric mean diameter 
and sphericity were calculated tridimensional in lab conditions. Then, prediction of these parameters was carried out using 
NNs. The research was divided into two parts; experimental investigation and simulation analysis with NNs. Back 
Propagation Neural Network (BPNN) and Radial Basis Neural Network (RBNN) structures were employed to estimate 
physical parameters of the pumpkin seeds. The Root Mean Squared Error (RMSE) was 0.6875 for BPNN and 0.0025 for 
RBNN structures. The RBNN structure was superior in prediction and could be used as an alternative approach to 
conventional methods. 
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Introduction 

Pumpkin belongs to Cucubitaceae family (Taylor and 
Brant, 2002; Caılı, 2006). The majority of the species in this 
family are found in five genera. The genus Cucurbita includes 
five species: C. maxima, C. pepo, C. moschata, C. ficifolia, and C. 
turbaniformis in which C. pepo exhibits the widest variation 
(Gemrot et al., 2006; Ardabili et al., 2011). 

Determination of the physical attributes of agricultural 
products is very significant for design of post-harvesting 
technologies and prediction of some essential parameters and 
characteristics correctly (Mohsenin, 1986). Physical attributes 
like geometric mean diameter, sphericity, grain trajectory, 
surface area, grain volumetric and specific weight, density, 
porosity and colour are used to design processes and equipment 
for product processing, transportation, screening, storage and 
drying-like processes (Tabatabaeefar and Rajabipour, 2005). In 
addition, determination of the physical attributes is used in 
terms of the final product quality evaluation and classification 

of different types (Taner et al., 2015). It also allows planning 
and controlling the above processes and gives a possibility of 
selecting parameters to functioning of devices and machines 
(Kaliniewicz et al., 2014). The information on the size and 
forms of farming components is essential to plan sizing, 
harvesting, separation, planting and handling devices (Sahay 
and Singh, 2004). Design of pneumatic separation devices 
requires surface and projected area (Bwade and Aliyu, 2012).  

NNs have been used in various disciplines like hydrology 
(Aksoy and Mohammadi, 2016), renewable and sustainable 
energy (Ata, 2015), robotics and computer-integrated 
manufacturing (Chen and Wang, 2016), robotics and 
autonomous systems (Woodford et al., 2017). Some 
application areas in agriculture are data prediction (Šťastný et 
al., 2011), classification of agricultural products (Shahin et al., 
2002; Khalesi et al., 2012; Dousti et al., 2013; Reshadsedghi et 
al., 2014), food and crop analysis (El-Sanhoty et al., 2006; 
Monteiro et al., 2007), drying process (Khazaei et al., 2013), 
precise weed detection and weed seeds identification (Granitto 

Received: 07 Jun 2016. Received in revised form: 09 Mar 2017. Accepted: 15 Mar 2017. Published online: 20 Mar 2017. 

mailto:demir_33@hotmail.com
mailto:ikbal@erciyes.edu.tr
mailto:zkus@erciyes.edu.tr
mailto:sercisli@atauni.edu.tr
http://www.notulaebotanicae.ro/


Demir B et al / Not Bot Horti Agrobo, 2017, 45(1):22-27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Neural Networks 
In this investigation, feed forward neural network model was 

applied to estimate some physical parameters of pumpkin seeds. 
Fig. 2 presents schematic illustration of neural network predictor. 

 
where jf  is the output of the jth neuron, wij is the weight of 

the relation between the input and hidden layer neurons, jb  is 
the bias of the jth neuron in the hidden layer. The function g (.) is 
named as the hidden layer transfer function. The network 
output signal can be described in the following design: 

 
where wjk are the weights between jth neurons and kth neurons, 

bk is the bias of the kth neurons in the output layer (Soylak et al., 
2015). Two learning algorithms which are applied to predict 
parameters of pumpkin seeds, concisely depicted in the bellowing 
subdivisions. During the analysis, NeuralWorks Professional 
II/Plus software was used.  

 
Back Propagation Neural Network 
The BPNN is a type of multi-layered feed forward network. 

The BPNN is composed of at least three layers every time: input 
layer, hidden layer/layers and output layer. The BPNN is 

generally employed to revise the weights of the BPNN. The 
weights between input and hidden layer are revised as follows: 

 
The weights between the hidden and output layer are revised 

in the following function: 

 
where η  is the learning coefficient, and α  is the momentum 

coefficient, E2 (t) is the propagation error and E1 (t) is the error 
between calculated and BPNN output signals. 

et al., 2002; Nebot et al., 2012), agricultural crop yield 
prediction (Dahikar et al., 2014), agricultural economics 
(Chen, 2005; Rohani et al., 2011), data analysis tool in 
precision agriculture (Irmak et al., 2006). 

In this paper, two NN structures were used in prediction of 
some physical parameters of pumpkin seeds, especially linear 
dimensions, geometric mean diameter, sphericity, volume, 
surface and projected area and consequently the performance 
of these structures was compared. 

 

Materials and Methods  

Seeds measurements  
The pumpkin (Cucurbita pepo L.) seeds, grown in summer 

season of the year 2015, used in this study were obtained from 
the province of Kayseri, Turkey. The seeds were selected 
manually and cleaned free of dirt, broken ones and other foreign 
materials.  

The moisture content of the seeds was determined by 
following a dry basis method (Suthar and Das, 1996) and was 
found to be 4.29% d.b. Measurements of the seeds were carried 
out at this moisture content. A total 100 seeds were selected 
randomly. The three main perpendicular dimensions, length (L, 
mm), width (W, mm) and thickness (T, mm), were measured 
(see Fig. 1) with a digital caliper (± 0.01 mm).  

The geometric mean diameter (Dg, mm) and sphericity (φ) 
were calculated by the equations below given by Mohsenin 
(1986) and cited by Vishwakarma (2012): 

1/3( )gD LWT=
 

100gD
x

L
φ =

 
The shape index (SI) was calculated by the following 

equation cited by Sayıncı et al. (2015):  
2

( )
LSI

W T
=

+
 

The surface area (S, mm2) was obtained by equation below 
given by McCabe et al. (1986) and cited by Arslan and Vursavus 
(2008): 

2

gS Dπ=
 

The volume (V, mm3) and projected area (Ap, mm2) of the 
seed were calculated by the following equations cited by Khazaei 
et al. (2006), Afonso Junior et al. (2007): 

3

6 gV Dπ
=

 

2

4p gA Dπ
=

 
Calculated parameters of the pumpkin seeds were used in the 

training process of two different NN structures. These structures 
are back-propagation neural network and radial basis function 
NN algorithms. 
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Fig. 1. Three main dimensions of pumpkin seeds; (a) length, 
(b) width, (c) thickness 
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Radial Basis Function Neural Network 
RBNN with a hidden layer are able to perform universal 

approximation. The hidden layer consists of Gaussian equation 
modules. The Gaussian equation, ψi; is determined as the 
following function (Yıldırım et al., 2013): 

2
exp[ ]i

i

i

x c
ψ

σ

−
= −

 
where x is the vector of an input sample, ci is the vector of the 

centre of the ith module and 2
iσ is the variance of the lth module. 

The output layer integrates the Gaussian domains produced by 
the hidden modules. The output signal of the mth module, rj, is 
determined with the following function: 

 
where wlm is the weight from the lth  module to the mth output 

module.  
Results and Discussion 

Results of the BPNN structure used in prediction of the 
average geometric diameter and sphericity of the pumpkin 
seeds are presented in Fig. 3.  The error values of the BPNN 
predictor were quite high. Results of the BPNN structure used 
in prediction of the shape index and surface area of the 
pumpkin seeds are provided in Fig. 4. The results of the 
predictor were not good enough. The last physical properties 
for which the BPNN structure used as a predictor were volume 
and projected area (see Fig. 5). As seen in Fig. 3, 4 and 5, the 
BPNN algorithm was not a useful tool to predict the physical 
parameters of pumpkin seeds. BPNN structure has a quite slow 
learning ability. Since this NN structure try to reduce the errors 
from output to input, the learning is quite slow due to the back 
propagation. BPNN structure usually found to be insufficient 
in estimation of seed physical parameters for the same iteration 
period. Therefore RBNN structure with a different learning 
algorithm was employed to estimate relevant parameters.  

Results for geometric mean diameter and sphericity 
prediction for this algorithm are given in Fig. 6. As seen in Fig. 

6, results of the RBNN predictor were pretty good. Results for 
the shape index and surface area prediction for this algorithm 
are given in Fig. 7, volume and projected area in Fig. 8. 
According to the simulation results, it is obvious that in 
prediction of the related physical parameters, the RBNN 
structure was more successful than the BPNN structure (see 
Table 1). RBNN structure has some superiority over the other 
NN structures such as faster convergence, smaller extrapolation 
errors, and higher reliabilities. RBNN is a class of single hidden 
layer feedforward networks where the activation functions for 
hidden units are defined as radially symmetric basis 
functions such as the Gaussian function. Thus, the RBNN can 
be used in prediction of such physical parameters of agricultural 
production. 

 

Fig. 2. Schematic representation of neural network predictor 
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Fig. 3. (a) Experimental and prediction results of geometric mean diameter 
parameter using the BPNN structure; (b) Experimental and prediction 
results of sphericity parameter using the BPNN structure 
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Fig. 4. (a) Experimental and prediction results of shape index 
parameter using the BPNN structure; (b) Experimental and 
prediction results of surface area parameter using the BPNN 
structure 
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Fig. 5. (a) Experimental and prediction results of volume 
parameter using the BPNN structure; (b) Experimental and 
prediction results of projected area parameter using the BPNN 
structure  
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Fig. 6. (a) Experimental and prediction results of geometric 
mean diameter parameter using the RBNN structure; (b) 
Experimental and prediction results of sphericity parameter 
using the RBNN structure 
 

Fig. 7. (a) Experimental and prediction results of shape index 
parameter using the RBNN structure; (b) Experimental and 
prediction results of surface area parameter using the RBNN 
structure 
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Similar to the results of the present research, the high 
performance of different NN structures in prediction or 
estimation of agricultural objectives was reported by Alvarez 
(2009), Dai X et al. (2011), Khoshnevisan et al. (2014), Rad et 
al. (2015), Taner et al. (2015), Shafaei et al. (2016). 

 
Conclusions 

Working with too many samples is both a time-consuming 
and a costly process. It also brings together various 
measurement errors. Right at this point, NNs can provide a 
great alternative to overcome such time-consuming, costly and 
erroneous processes. Therefore, NN structures were employed 
to estimate physical characteristics of pumpkin seeds from 
easily identified characteristics. In this study, some physical 
parameters of pumpkin seeds were predicted by two different 
NN structures. The RBNN had superior performance to 

predict different physical parameters of the pumpkin seeds. 
RBNN have some advantages also as of: they minimize the 
possibility of error and hence the hypothesis of linear behaviour 
is no longer required. RBNN structure of the present study 
provided high-accuracy outcomes and also great time and cost 
savings. For that reason, the RBNN could be employed to 
predict such physical parameters in agricultural applications. 
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