Vegetative Growth and Quality of Blueberry Fruit Cultivated in Chihuahua, Mexico



The aim of this investigation was to evaluate the vegetative growth and some physicochemical quality parameters in fruits of different varieties of blueberries grown with amendments applied to the soil. The experimental design was completely randomized according to factorial treatments with nine replications. Length and number of shoots, flower buds number, total soluble solids (TSS), pH, color, total anthocyanins (TA), total phenols (TP) and antioxidant capacity (AC) were evaluated. The application of gypsum, sulphur and compost increased the shoots number in the varieties ‘Bluejay’ and ‘Duke’ with values from 15 and 17.5, respectively. The ‘Duke’ variety was the latest with regard to the flowering stage, evading the problem of frost. Among varieties, ‘Bluejay’ and ‘Blueray’ stood out for presenting fruits with greater acidity and antioxidant capacity (89.1 and 91.5% DPPH inhibition, respectively), however, the TP was higher in ‘Bluejay’ (701.6 mg gallic acid 100 g-1). The use of gypsum, sulphur and compost allows obtaining fruits with high soluble solids content (9.8 °Brix), however, the antioxidant capacity was similar when pine peel was included, with AC values from 91.4 and 88.8% DPPH inhibition, respectively. The amendments such as gypsum, sulphur and compost incorporated into the soil allow an adequate vegetative growth and the obtaining of blueberry fruits with physicochemical quality characteristics acceptable for their commercialization.


agronomic management; amendments; antioxidant capacity; flowering; total phenols; Vaccinium corymbosum L.

Full Text:



Angeletti B, Castagnasso H, Miceli E, Terminiello L, Concellón A, Chaves A, Vicentea AR (2010). Effect of preharvest calcium applications on postharvest quality, softening and cell wall degradation of two blueberry (Vaccinium corymbosum) varieties. Postharvest Biology and Technology 58:98-103.

Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie 22:25-30.

Brito A, Areche C, Sepúlveda B, Kennelly EJ, Simirgiotis MJ (2014). Anthocyanin characterization, total phenolic quantification and antioxidant features of some Chilean edible berry extracts. Molecules 19(8):10936-10955.

Çelik H, Özgen M, Saraçoglu O (2012). Organik ve standart olarak yetistirilen bazi yüksek moylu maviyemis (Vaccinium corymbosum L.) cesitlerinin fitokimyasal icerikleri ile antioksidan kapasitelerinin karsilastirilmasi [Comparison of phytochemicals and antioxidant capacities of some standard and organically grown highbush blueberries (Vaccinium corymbosum L.).]. Journal of Agricultural Sciences 18:167-176.

Correa DMG, Vizzotto M, Picolotto L, Correa ALE (2017). Production, physical-chemical quality and bioactive compounds of misty blueberry fruit under different pruning intensities. Revista Brasileira de Fruticultura 39(e-158):1-6.

Crecente-Campo J, Nunes-Damaceno M, Romero-Rodríguez MA, Vazquez-Odériz ML (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva). Journal of Food Composition and Analysis 28(1):23-30.

Giovanelli G, Buratti S (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chemistry 112:903-908.

Haynes RJ, Swift RS (1986). Effect of soil amendments and sawdust mulching on growth, yield and leaf nutrient content of highbush blueberry plants. Scientia Horticulturae 29:229-238.

Hummer K, Zee F, Straus A, Kejth L, Nishijima W (2007). Evergreen production of southern highbush blueberries in Hawaii. Journal of the American Pomological Society 1:188-195.

Lobos MT, Pinilla QH, Lobos AW (2011). Efecto de aplicaciones de calcio en la calidad de la fruta de arándano alto (Vaccinium corymbosum L.) cv. Elliot [Effect of calcium applications on the quality of highbush blueberry fruit cv. Elliott]. IDESIA 29: 59-64.

Mditshwa M, Samukelo ML, Zeray TS, Mbili N (2017). Postharvest quality and composition of organically and conventionally produced fruits: A review. Scientia Horticulturae 216:148-159.

Michalska A, Lysiak G (2015). Bioactive compounds of blueberries: post-harvest factors influencing the nutritional value of products. International Journal of Molecular Sciences 16(8):18642-18663.

Molina JM, Calvo D, Medina JJ, Barrau C, Romero F (2008). Fruit quality parameters of some southern highbush blueberries (Vaccinium × corymbosum L.) grown in Andalusia (Spain). Spanish Journal of Agricultural Research 6(4):671-676.

Muñoz-Vega P, Paillán H, Serri H, Donnay D, Sanhueza C, Merino E, Hirzel J (2016). Effects of organic fertilizers on the vegetative, nutritional, and productive parameters of blueberries ‘Corona’, ‘Legacy’, and ‘Liberty’. Chilean Journal of Agricultural Research 76(2):201-212.

Ochmian I (2013). Growth, yield and fruit quality two cultivars lowbusch blueberry. Acta Scientiarum Polonorum Hortorum Cultus 12(2):87-96.

Ordoñez BMF, Jacobo CJL, Quintana LE, Parra QRA, Guerrero PVM, Ríos VC (2016). Pulgón lanígero e impacto ambiental por el uso de pesticidas en manzano en Chihuahua, México [Woolly aphid and environmental impact of pesticide use in apple tree in Chihuahua, Mexico]. Revista Mexicana de Ciencias Agricolas 7(3):573-583.

Ortiz SCA (1987). Elementos de agrometeorología cuantitativa: con aplicaciones en la República Mexicana [Elements of quantitative agrometeorology: with applications in the Mexican Republic]. Universidad Autónoma Chapingo: Departamento de Suelos. Texcoco, Mexico.

Paal T, Starast M, Noormets-Sanski M, Vool E, Tasa T, Karp K (2011). Influence of liming and fertilization on lowbush blueberry in harvested peat field condition. Scientia Horticulturae 130:157-163.

Pennypacker SP, Knoble HD, Antle CE, Madden LV (1980). A flexible model for studying plant disease progression. Phytopathology 70(3):232-235.

Ramírez LMR, Ruiz CJA, Medina GG, Jacobo CJL, Parra QRA, Ávila MMR, Amado AJP (2011). Perspectivas del sistema de producción de manzano en Chihuahua, ante el cambio climático [Perspectives on the apple production system in Chihuahua facing climate change]. Revista Mexicana de Ciencias Agrícolas 2:265-279.

Ramírez-Legarreta MR, Jacobo-Cuéllar JL, Gardea-Béjar AA, Parra-Quezada RA (2008). Modelo de desarrollo floral en manzanos [Malus sylvestris (L.) Mill. var. domestica (Borkh) Mansf.] Red Delicious y Golden Delicious como herramienta de toma de decisiones en el manejo integrado de enfermedades [Model on floral development of apple [Malus sylvestris(L.) Mill. var. domestica (Borkh) Mansf.] Red and Golden Delicious as a decision–making tool for integrated disease management]. Revista Mexicana de Fitopatología 26(2):153-163.

Ríos FJL, Torres MM, Ruíz EMJA (2017). Productividad del agua en manzano producido bajo diferentes niveles de tecnificación en Cuauhtémoc, Chihuahua, México [Water productivity in apple tree produced under different levels of tecnification in Cuauhtemoc, Chihuahua, Mexico]. Asuntos Económicos y Administrativos 32:135-146.

Rodríguez-Roque MJ, Rojas-Grau? MA, Elez-Martínez P, Martín-Belloso O (2013). Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. Journal of Agricultural and Food Chemistry 61:1859-1867.

ALIS (2017). Agricultural and Livestock Information System. Agroalimentary Atlas 2017. Secretary of Agriculture, Livestock, Rural Development, Fisheries and Food (in Spanish). Retrieved 2018 March 12 from

Wrolstad RE (1976). Color and pigment analyses in fruit products. Corvallis, OR: Oregon State University. Oregon, USA.


June 1, 2018: Notulae Botanicae Horti Agrobotanici Cluj-Napoca in Scopus – Elsevier CiteScore 2017=0.78, Horticulture; Agronomy and Crop Science; Plant Science