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Abstract

In this study, Roman nettle (Urtica pilulifera L.) seedlings grown singly in standard pots containing compost were exposed to 
two different levels of aluminum and cadmium (100 µM and 200 µM) and water stress (moderate and severe stress) treatments. 
Measurements of stomatal perimeters, diameters and areas from the epidermal sections in lower surfaces of young expanded leaves of 
main stem and first lateral branches were examined by image processing and analysis software. The data proved that all stomata were 
affected significantly, but with varying responses, in all treated plants compared to control plants. Excluding severe water stress (WS 
2), the data from first lateral branch leaves showed slight sensitivity to all stress treatments. Nevertheless, there were no statistically 
significant differences between stomatal measurements from main stem and first lateral branch leaves. Particularly, reduction in 
stomatal diameters of both main stem and first lateral branches in severe water stressed plants, reducing by 26.45% and 48.09% 
respectively; suggest that this could be a response of U. pilulifera to drier environments.
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Introduction 

Stomata are the principal means of gas exchange in vas-
cular plants. They are small pores, found epistomatically, 
hypostomatically and amphistomatically on leaves that are 
fully/partly opened or closed under the control of a pair 
of kidney-shaped cells called guard cells (Fitter and Hay, 
1978; Grant and Vatnick, 1998; Adedeji and Jewoola, 
2008). In nature, the opening and closing of stomata in-
volves feedback and feed-forward loops, and is affected by 
decreased CO2 in the intercellular air space, too much tran-
spiration and some environmental conditions such as wa-
ter stress (Garbutt et al., 1990; Jones,1992). The stomatal 
mechanism is also affected by the plant hormones; abscisic 
acid (ABA), cytokinins, auxins, and possibly gibberellic 
acid. ABA plays an important role in stomatal closure, seed 
dormancy and plant adaptation to environmental stresses 
(Tal and Imber, 1970;  Davies, 1987). In addition, stress 
factors like high salinity and drought are among the most 
crucial factors for the growth of plants and water stress in-
duces a rapid decline in stomatal conductance, rate of tran-
spiration and net photosynthesis (Davies, 1987; Kozlowski 
1997; Munns, 2002; Buckley, 2005). Some toxic and heavy 
metals affect soil pH and uptake of the nutrients from the 
soil, which influence plant growth and development (Mat-
sumoto, 2000; Neil and Gregory, 2001; Nocito et al., 2002; 
Vitorello et al., 2005). 

Al is the most abundant metal in the earth’s crust and 
one of the most important components of the soil (7%), 

and also it is soluble as a trivalent ionic form is highly ac-
tive in acid soil (< pH 5.0) and toxic to plant growth (2-3 
ppm) causing reductions in crop production (Thornton 
et al., 1986; Kochian, 1995; Matsumoto, 2000; Vardar et 
al., 2006). The molecular mechanisms of Al toxicity are 
still poorly understood, despite extensive studies (Rengel, 
1992; Delhaize and Ryan, 1995). Among the common 
effects of Al are: decrease in total leaf number and size, a 
decrease in shoot biomass, inhibition of root elongation, 
chlorosis and necrosis of leaves leading to decreased photo-
synthetic activity (Thornton et al., 1986; Kochian, 1995; 
Jones and Kochian, 1995). Al also causes ultrastructural 
and cellular changes in leaves, as cell division and elonga-
tion are inhibited, and reduces stomatal aperture (Rengel,  
1992; Kochian, 1995; Delhaize and Ryan, 1995; Vardar 
and Ünal, 2007).

Cadmium is considered a trace element, and is one of 
the heavy metals with an occurrence in natural and agricul-
tural environments mostly resulting from human activities, 
such as industrial processes like mining and refining (Wag-
ner, 1993; Sandalio et al., 2001; Akgüç et al., 2008). Cd is a 
strong phytotoxic element, which inhibits vegetative plant 
growth and even causes plant death (Sandalio et al., 2001). 
The mechanisms involved in cadmium toxicity still require 
more research, despite intensive studies on its toxicity in 
a variety of plants. Common effects of Cd include; affect-
ing water balance of plants by reducing root growth, limit-
ing water uptake via a reduction in vessel size, and causing 
partial stomatal closure (Barcelo and Poschenrieder, 1990; 
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plant is commonly used as a remedy for diabetes mellitus 
(Baytop, 1999). Up to this day, such use of U. pilulifera 
L. is quite prominent in the Black Sea region of Turkey 
(Kavalalı et al., 2003).

The objectives of this research were to investigate the 
effects of different levels of Al (100 µM-200 µM), Cd (100 
µM-200 µM) and water stress (moderate stress and severe 
stress) exposure to Roman nettle seedlings and to observe 
the relationship between some stomatal parameters (pore 
diameter, perimeter and area) and various stress types un-
der growth room conditions. 

Materials and methods

Growing seeds

The surface of Roman nettle seeds were soaked by im-
mersion in ethyl alcohol (50%) for 1 minute followed by 
deionized water for 5 minutes. They were then transferred 
into small vessels containing sterilized compost for germi-
nation. During the germination period (2 weeks), the seeds 
were moisturized with deionized water. When the shoot 
lengths of the young plantlets reached 3-4 cm, they were 
transferred into standard plastic pots containing sterilized 
compost and maintained under growth-room conditions. 
The plants were grown under fluorescent tubes giving an 
irradiance of 5000 lx (day/night-16/8 respectively), and 
a temperature of 23±2 °C and relative humidity 45-50%. 
Each of the experimental groups of eight replicates were 
watered with Hoagland‘s nutrient solution (Hoagland and 
Arnon, 1950) at two-day intervals for the 2 months dur-
ing which the stress treatments were applied.

Stress Treatments 

Application of Al and Cd
While control plants were watered only with Hoagland 

solutions, the experimental groups were watered with 
spiked Hoagland solutions (prepared as 100 and 200 µM 
AlCl3 or CdCl2). Each treatment was watered with 40 ml 
of solution at two-day intervals. The soil pH was adjusted 
to 4.5 for Al treatments using 2% H2SO4. 

Water stress
The gravimetric determination of water content by 

weighing soil samples before and after oven drying to con-
stant weight at 85 oC was used to calibrate all measure-
ment of the moisture content of compost in pots. The pot 
weights corresponding to soil moisture contents after 12 
and 18 days were calculated according to the equation of 
Paquin and Mehuys (1980). After determining the stress 
levels as 52% and 45% moisture content for moderate 
(MS) and severe stress (SS) levels respectively, the seed-
lings were watered at two-day intervals to maintain the 
moisture levels.

Prasad, 1995). It also causes a decrease in tissue biomass, 
chlorosis, and effects on specific physiological (e.g., xylem 
transport) or biochemical (e.g., nitrogen fixation) process-
es (Kosma et al., 2004).

Water stress is also one of the most important environ-
mental factors causing to reduction in plant growth and 
development as well as plant productivity and crop yields 
(Boyer, 1982; Jones and Famjul, 1982; Akıncı, 1997). The 
effect of water stress can be manifest in many ways, as var-
ied morphological, physiological and biochemical changes 
in plants under different water stress. For instance changes 
in leaf morphology (Parker, 1968; Morgan, 1980; Hsiao et 
al., 1984; Blum,1989; Akıncı, 1997), effects on shoot and 
root growth and development (Sharp and Davies, 1979; 
Rambal and Debussche, 1995; Akıncı, 1997), limiting 
photosynthetic activity by decreasing CO2 influx, decrease 
in carboxylation, electron transport chain activities of the 
chloroplasts in the mesophyll cells (Akıncı, 1997). It also 
affects many other metabolic pathways, mineral uptake, 
membrane structure (Schulze, 1986; Davies and Zhang, 
1991; Tardieu and Davies, 1993; Davies, 1995) stomatal 
structural changes and conductance (Huber et al., 1984; 
Wong et al., 1985; Raschke and Resemann, 1986; Cornic 
et al., 1989; Akıncı, 1997), and CO2 uptake (Hsiao, 1973; 
Quick et al., 1992; Akıncı, 1997).

Water deficit in plants causes the closure of stomata 
(Hsiao, 1973; Epstein and Grant, 1973; Quick et al., 
1992; Akıncı, 1997), which decreases both transpiration 
and photosynthesis in many plant species (Zelitch, 1971; 
Shekharv and Iritani, 1979; Fatemy et al., 1985). Stomatal 
closures occur via the distress signal “abscisic acid” and 
lead to a decreased rate of transpiration from the meso-
phyll chloroplasts to the guard cells of the stomata during 
water stress conditions (Wright, 1969; Wright and Hiron, 
1969).

Urticaceae family members are very common and 
widespread species found in the margins of arable fields, 
gardens and countryside throughout Europe, Asia and 
Northern Africa (Firbank et al., 2002). They have high 
nutrient requirements demonstrated by leaves, which con-
tain high levels of N, Ca, Mg (Grime et al., 1988; Wilman 
and Riley, 1993) and Fe (Salisbury, 1962). Urtica dioica 
L. (stinging nettle) and Urtica urens L. (dwarf nettle) are 
well-known Urticaceae family member species and they 
have been used as medicinal plants all over the world for 
years (Kavalalı et al., 2003).  They have used as expecto-
rant, purgative, diuretic, hemostatic, vermifuge and for the 
treatment of eczema, rheumatism, hemorrhoids, hyper-
thyroidism, bronchitis and cancer (Barker, 2001; Kavalalı 
et al., 2003). Furthermore, their stems have also used for 
making linen and ropes (Bond et al., 2006). A less known 
Urticaceae family member U. pilulifera L. (Roman nettle) 
locally, named “Kara Isırgan” is one of the most important 
traditional drugs in Turkey. All parts of the plant bristle 
with stinging hairs and it flowers from May to August 
(Davis,  1982). In Turkish traditional folk medicine, this 
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WS 1 treatments were slightly higher than the reduction in 
the main stem stomata for these treatments (Tab. 1). The 
reduction of the stomatal sizes in Al 1 and Al 2 showed 
similarities, indicating stability of effect, unlike Cd 1-2, 
and WS 1, which particularly reduced stomatal openings 
(Vitorello et al., 2005). The changes in Al treated plants 
suggest the inhibition of K+ in guard cells, which is cor-
related to stomatal opening (Schroeder, 1988; Schroeder 
et al., 1994). Al treatment of plants (9 h) induced stomatal 
closure (Sivaguru et al., 2003) and abscisic acid regulates 
potassium and chloride ion channels at the plasma mem-
brane of guard cells, leading to stomatal closure by reduc-
ing transpiration (Leyman et al., 1999). Comparing the 
values between the main stem and first lateral branch 
leaves, it was observed that the differences between de-
creasing values in all stomatal measurements fluctuated in 
WS 1, Cd 1 and Cd 2 (Tab. 1). The results of Cd 1 and 
Cd 2 treatments suggest that water absorption level was af-
fected by Cd, as well as ABA changes, leading to stomatal 
closure and significant decrease in stomatal opening with 
increased Cd concentration. It has been suggested that Cd 
has a direct effect on the ion and water movement in the 
guard cells (Sayed, 1997); nitrogenase activity declined 
(30%) even at18 µM, and photosynthesis was depressed 
by 60% by 300 μM Pb and Cd (Huang et al., 1974). It has 
also been reported that Cd reduces ATP and chlorophyll 
concentrations in many species, decreases oxygen pro-
duction (Das et al., 1997), and that significantly reduced 
transpiration rates (Sayed, 1997) might be related to Cd-
treated plants having smaller stomatal apertures (Huang et 
al., 1974; Sayed, 1997). 

The various effects of water deficit seen on stomatal 
structure are clearly mechanisms to enable plants to sur-
vive in stress conditions. For instance, various strategies 
can be seen in wheat and other cereals in terms of turgor 
loss and stomatal closure at different relative water con-
tent (Richter and Wagner, 1982). In this study, Roman 
nettle seedlings responded differently to two levels of 
water stress. The first level of water stress (WS 1) caused 
the greatest reduction in main-stem leaf stomatal param-

After 2 months of stressing with Al, Cd and water, 
plants were harvested and microscopic preparations were 
arranged for stomata studies. The two youngest fully-ex-
panded leaves from shoots and first lateral branches were 
harvested from each plant, and for each leaf 20 stomata 
from the abaxial leaf epidermis were measured for stomatal 
apertures (pore diameter, perimeter and area) (Fig. 1). The 
preparations were photographed with an Evolution LC 
Color camera and an Olympus BH-2 microscope. The im-
ages were analyzed with Image-Pro express version 6.0 sci-
entific image processing and analysis software. The stress 
treated plants are abbreviated as Al 1 (100 µM AlCl3), Al 
2 (200 µM AlCl3), Cd 1 (100 µM CdCl2), Cd 2 (200 µM 
CdCl2), WS 1 (moderate water stress) and WS 2 (severe 
water stress) respectively.

Statistical Analysis

The data were subjected to paired-sample T-tests, using 
SPSS 11.5 for Windows, with 95% (P < 0.05) significance 
of differences between means. Means are indicated with 
standard error (bars indicate s. e.).

Results and discussion

In this study, the diameters, perimeters and areas of 
stomata from the lower surfaces of leaves were measured 
using Image-Pro express version 6.0 scientific image pro-
cessing and analysis software. In all cases, stomatal sizes 
were significantly decreased in stress-imposed replicates 
compare to control values (Fig. 2-3). The reduction in the 
values for first lateral branch leaves stomata for Al 1-2 and 

Tab. 1. The reduction % of treatments of main stem and first lateral branches with respect to controls 
(D= Diameter, P= Perimeter and A= Area)

Al 1 Al 2
Reduction % D P A D P A
Main Stem 60.31 33.15 74.42 61.86 36.96 73.84
Branch 64.39 43.09 77.75 69.55 38.79 79.84

Cd 1 Cd 2
Reduction % D P A D P A
Main Stem 43.19 21.58 55.92 60.70 38.40 73.68
Branch 56.02 18.65 57.12 68.71 24.73 71.07

WS 1 WS 2
Reduction % D P A D P A
Main Stem 70.3 34.74 76.64 26.45 29.31 58.30
Branch 68.51 55.66 81.20 48.09 36.60 61.08

Fig. 1. Different stomatal measurements A) Pore diameter, B) Pe-
rimeter, C) Area
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more densely distributed stomata (no data obtained in the 
experiment) is seen as an adaptation in  leaves growing un-
der conditions of water deficiency, which allows a leaf to 
reduce transpiration by regulating stomatal mechanisms 
more rapidly (Hsiao, 1973; Larcher, 1995).

Conclusion

Environmental factors affect whole plants; however, 
it is the effects on the aerial parts that are most markedly 
visible. In leaves, guard cell regulation has become an im-
portant model system for understanding the regulatory 
signals that govern stomatal behavior (Comstock, 2002). 
Stomatal responses have been measured under stress fac-
tors such as salinity and drought however, investigations 
on the influence of heavy metals toxicity on stomatal regu-
lation, especially the effects Al and Cd, were limited. 

Al toxicity in molecular terms is still poorly under-
stood (Rengel, 1992; Delhaize and Ryan, 1995). However, 

eters (70.3% reduction in perimeters) and in first lateral 
branch leaves (81.20% reduction in areas). These results 
suggest that the WS 1 treated plants showed more sensi-
tivity to severely stressed ones. Despite the fact that clo-
sure of stomata is a very effective protection for plants 
exposed to severe stress levels (Fitter and Hay, 1978) the 
stomatal diameters and areas under WS 2 treatment were 
not affected as much as under WS 1 and the reductions 
in stomatal parameters for WS 2 were significantly differ-
ent from both WS 1 treatment and controls. The values 
for WS 2 suggested that this stress level induced the criti-
cal leaf water potential. The stomatal aperture begins to 
narrow, and closure can be complete within 0.5 MPa of 
the threshold, causing cessation of CO2 uptake for photo-
synthesis and stomatal transpiration (Hsiao, 1973) in WS 
1. The other resistive mechanism of WS 2 treated plants 
might be related with clustering of hairs round stomatal 
pores, which can increase stomatal resistance to water loss 
(Akıncı, 1997). On the other hand, developing smaller but 

Fig. 2. A-B-C. The effects of different stress factors on stomatal parameters and results of SPSS analyses (A: Diameter, B: Perimeter and 
C: Area). Left columns (Grey) = Main stem, Right columns (White) = First Lateral Branch
*: significantly different from C, **: significantly different from Cd 1 and C, **+: significantly different from WS 1 and C
*: significantly different from C, **: significantly different from WS 1 and C
**: significantly different from Cd 1 and C, **+: significantly different from WS 1 and C
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karuna et al., 2003). The stomata normally close to reduce 
water loss from the leaves under drought conditions (Van 
Iersel and Nemali, 2004). Compared with control values, 
the stomatal perimeter, diameter and area values were sig-
nificantly reduced by all treatments of Al, Cd and water 
stress in both main stem and first lateral branch leaves. The 
reduction in area and diameter was conspicuous; however, 
the smaller reduction in perimeter suggests that stomatal 
closure is accompanied by decreasing stomatal sizes de-
pending on a reduction in epidermal tissues. The data from 
first lateral branch leaves showed less sensivity to the stress 
factors than those in main stems, compare to controls. 
However, the appliance of 100 and 200 μM Al and severe 
water stress (SS) showed a rather decrease in stomatal mea-
surements in Roman nettle’s first lateral branches, whereas 
100 and 200 μM cadmium and moderate water stress (WS 
1) caused fluctuations of the measured parameters in both 

common effects include: decrease in total leaf number and 
size, chlorosis and necrosis of leaves leading to decreased 
photosynthetic activity (Thornton et al., 1986; Kochian, 
1995; Jones and Kochian, 1995) and reducing stomatal 
aperture (Rengel, 1992; Kochian, 1995; Delhaize and 
Ryan, 1995; Vardar and Ünal, 2007).

Cadmium toxicity on plants requires intensive stud-
ies, although some have been undertaken so far, provid-
ing some evidence that it affects water balance of plants by 
reducing root growth, thereby limiting water uptake, and 
causing partial stomatal closure (Barcelo and Poschenrie-
der, 1990; Prasad, 1995).

It is clearly known that plants exposed to short-term 
water deficit respond by reducing stomatal conductance 
and water loss ( Jones and Famjul, 1982; Morgan 1980; 
Buckley, 2005) and field and greenhouse research indicate 
that races may respond differently to water stress (Raja-

Fig. 3. Stomatal guard cells of 2 months stress treated (Al, Cd and WS) Roman nettle (Urtica pilulif-
era L.).  C= Control, S= Main Stem (Leaf ), B= First Lateral Branch (Leaf ) Al 1= 100µM AlCl3 Al 
2= 200µM AlCl3 Cd 1= 100µM CdCl2 Cd 2= 200µM CdCl2 WS 1= Moderate water stress WS 
2= Severe water stress. Bars = 5 µm.

CS CB

Al 1B Al 1S Al 2S Al 2B

Cd 1BCd 1S Cd 2S Cd 2B 

WS 1B                           WS 1S WS 2S WS 2B
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