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Abstract 

DNA barcoding is a relatively new method of identifying plant species using short sequences of chloroplast DNA. 
Although there is a large number of studies using barcoding on various plant species, there are no such studies in the genus 
Secale. In this study the plant material consisted of 10 cultivated and non-cultivated species and subspecies of rye genus. Three 
chloroplast DNA regions (rbcL, matK, trnH-psbA) were tested for their suitability as DNA barcoding regions. Universal 
primers were used, and sequenced products were analyzed using Neighbor Joining and the Maximum Likelihood in the 
MEGA 7.1 program. We did not observe high variability in nucleotide sequences within the matK and rbcL regions. Only 
2.2% of the sequences showed polymorphism in the rbcL region, while 6.5% in the matK region. The most variable trnH-psbA 
(15.6%) intergenic region was the most useful for rye barcoding. Individual application of the studied regions did not provide 
the expected results. None of the regions used in the study allowed the division of rye species and subspecies according to the 
adopted classification of the genus Secale. The results confirm that the use of matK and rbcL is insufficient for DNA barcoding 
in rye species, and better discrimination within the genus Secale can be obtained only in combination with the non-coding 
trnH-psbA sequence. Our results also indicate the necessity of using a different region. All of the new sequences have been 
deposited in Genbank. 
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Introduction 

Rye (Secale cereale L.) belongs to the tribe Triticeae from 
the Poaceae (grass) family and is related to bread wheat 
(Triticum aestivum L.) and barley (Hordeum vulgare L.). It 
has the largest genome (~7.9 Gbp) among all diploid 
Triticeae, containing over 90% of repetitive sequences 
(Bartoš et al., 2008; Bauer et al., 2017). Rye crop (Secale 
cereale L.) is a rich and important source of valuable genes 
encoding, e.g., high protein content, resistance to diseases as 
well as morphological and biochemical traits that increase 
triticale value (×Triticosecale Wittmack) (Kubicka et al., 
2006). Rye, as compared to other cereals, is distinguished by 
its exceptional cold tolerance and higher yields from wheat 
and barley in poor and moderate soils and under drought 
stress conditions (Schittenhelm et al., 2014). Translocations 
from rye genome are present in many cultivars of wheat 
grown all over the world, thanks to which wheat is 

characterized by better stress tolerance caused by both 
abiotic and biotic factors (Rabinovich, 1998). In addition, 
rye is a difficult object of genetic and breeding studies. The 
reason is the open-pollination, self-incompatibility and the 
relationship between heterozygosity and productivity, 
which arises as a result of inter-chromosomal gene 
interactions (Schlegel, 2006). 

Recently, the species of cultivated rye has been fully 
sequenced (Bauer et al., 2017), which will certainly have a 
positive effect on large-scale functional analyses as well as rye 
genetic modification for sustainable plant production. 
However, the task of modern cereal breeding is still to 
obtain new, better yielding cultivars, characterized by high 
resistance to diseases, pathogens and unfavourable abiotic 
conditions. Progress in rye breeding has been unfortunately 
significantly slowed down and limited, because the cultivars 
used in cultivation are characterized by limited variability 
due to continuous selection and attempts to use old 
cultivars proved to be ineffective. The wild rye species and 
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requirements of DNA barcoding, therefore, in contrast to 
animals in which the barcode region consists of only one 
locus (coxI), it was decided to use a barcode consisting of 
two loci in plants, i.e., matK and rbcL (Hollingsworth et al., 
2009). The rbcL and trnH-psbA pair provided very good 
results, but due to difficulties in amplification and 
subsequent assembly of the trnH-psbA intergenic region 
sequence, a pair consisting of two coding regions was 
selected for the official plant DNA barcode: rbcL i matK
(Kress and Erickson, 2007; Hollingsworth et al. 2009).  

Plastid DNA is widely used as a marker of choice in 
phylogenetic and phylogeographical studies, however, little 
is known about its usefulness in analyzing the relationships 
between closely related species. The slow rate of cpDNA -
specific evolution hinders taxonomic analyses at lower levels, 
especially at the population level. In addition, studies clearly 
indicate that the utility in phylogenetic analyses of different 
cpDNA non-coding regions within a given taxonomic 
group can vary enormously (Sang et al., 1997; Xu et al., 
2000; Hartmann et al., 2002; Hamilton 2003; Sakai et al., 
2003), and the selection of the appropriate cpDNA region 
is often difficult due to the lack of information about the 
rate of evolution between different non-coding cpDNA 
regions. 

Given the above, the aim of our research was to: i) 
investigate whether the three cpDNA regions, which were 
previously proposed as barcoding tools for various 
angiosperms: rbcL and matK genes, and the intergenic 
trnH-psbA region, can be used as barcodes to distinguish 
representatives of rye species and subspecies and ii) assess the 
value of phylogenetic information provided by these 
markers. 

 

Materials and Methods  

Plant material  
The plant material consisted of 10 cultivated and non-

cultivated species and subspecies of rye genus, obtained from 
several world collections (Center for Biological Diversity 
Conservation in Powsin-Warsaw, Poland; United States 
Department of Agriculture - Agricultural Research Service, 
USA; Nordic Genetic Resource Center, Sweden) (Table 1). 

 
DNA extraction, PCR amplification and sequencing  
The probes of genomic DNA were isolated from 10 

randomly chosen fresh leaves of 6 to 7-day-old etiolated 
plants. The leaves were ground with liquid nitrogen, 
producing ~100 mg of fine powder. The isolation was 
performed using FastDNA® Green SPIN Kit (DNAeasy 
Plant Mini Kit-Wizard® Genomic DNA, Promega). Both 
quality and concentration of the DNA were assessed by 
agarose gel electrophoresis and spectrophotometry 
(NanoDrop 2000; Thermo Scientific).  

The reaction was carried out in duplicate by way of PCR 
analyses which were performed in a T100™ Thermal Cycler 
(Bio-Rad) in the final volume of 20 μl. The single PCR 
reaction mixture contained: 1x DreamTaq Buffer, 0.2 mM 
dNTP, 0.1 µM of each primer, 50 ng genomic DNA and 1 
U DreamTaq DNA Polymerase (Thermo Scientific). 

The primers used for amplification of rbcL were rbcL1f: 
ATGTCACCACAAACAGAAAC and rbcL724r: TCG

subspecies are an excellent starting material for research 
aimed at expanding the recombination variability in the 
Secale cereale L. species. They are, due to their genetic 
distinctiveness and high trait expression, a valuable source of 
genes, in which our cultivars are poor (Rzepka-Plevneś, 
1990).  

Disease-resistance genes, e.g., to downy mildew or brown 
rust, resistance to pre-harvest sprouting (Rzepka-Plevneś, 
1993; Rzepka-Plevneś and Tomczak, 1993) and lodging 
(Rzepka-Plevneś, 1993) are sought in wild species (S. 
vavilovii, S. sylvestre, S. montanum, ssp. montanum and S. 
kuprijanovii) (Rzepka-Plevneś, 1990). S. anatholicum is used 
for breeding cultivars with increased grain protein content 
and cultivars for the green mass. Wild rye species are also a 
source of male sterility genes (Stracke, 2003).  

Generation of interspecific hybrids is currently often 
successful, however, their yield and quality pose problems 
(Rzepka-Plevneś, 1993). In addition, hybrids produced are 
not suitable for cultivation, they require many years of 
backcrossing with cultivated rye to restore functional traits. 
These difficulties cause that despite many years of research, 
wild rye species are still under-utilized as a source of desired 
genes and there are no reports on the genetic structure of 
these species in the world literature.  

The introduction of DNA barcoding was a 
breakthrough in species identification methods. The basis of 
this technique is the use of a very short, defined genomic 
sequence that allows obtaining a DNA barcode – an image 
of base pair sequence in the DNA fragment that can be 
compared to determine individual species classification 
(Ajmal et al. 2014; Skuza et al., 2015). The gene encoding 
cytochrome oxidase (COI, coxI) subunit of 648 bp, located 
in the mitochondrial genome is the best gene used for 
barcoding in animals (Stoeckle and Thaler 2014). The COI
gene has also been shown to be effective in identifying birds, 
fish, butterflies, flies, bats and many other animal groups. 
However, among plants, the mitochondrial genome could 
not be used due to the different evolution of this genome in 
plants as well as the possibility of plant interbreeding – the 
possible presence of mitochondria from different species in 
one plant (Hollingsworth et al., 2011). Research conducted 
by the group working on plant barcoding (CBOL Plant 
Working Group, 2009), which compared several different 
sets of genes potentially useful for barcoding, found that the 
best and most reliable results are obtained for chloroplast 
genes: matK, encoding maturase, and rbcL, encoding the 
large subunit of RuBisCO (Hollingsworth et al., 2011). As a 
result, various fragments of the chloroplast genome have 
been proposed as plant barcodes. They were selected from 4 
coding regions: matK, rbcL, rpoB, rpoC1 and from the pool 
of non-coding fragments: atpF-atpH, trnH-psbA, psbK-psbI
(Hollingsworth et al., 2009), trnL, trnL-trnF and trnK
intron/matK (Bellstedt et al., 2001; Ge et al., 2002; Klak et 
al., 2003; Muellner et al., 2003; Samuel et al., 2003). 

Eventually, the group of potential plant barcodes was 
narrowed down to matK and rbcL genes and to the non-
coding trnH-psbA region. Thorough research on the 
effectiveness of species identification and the ease of 
obtaining the sequence of each potential barcode was 
carried out. None of these regions alone met all the 
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CATGTACCCTGCAGTAGC; for matK were matK
390F:CGATCTATTCATTCAATATTTC, matK1326
R:TCTAGCACACGAAAGTCGAAGT, while the 
primers used for amplification of trnH-psbA were psbA3’f: 
GTTATGCATGAACGTAATGCTC, trnHf05: CGCG
CATGGTGGATTCACAATCC (Parmentier et al., 
2013). The primers were synthesized in the Laboratory of 
DNA Sequencing and Synthesis of IBB PAN Genomed 
S.A. (Warsaw).  

The following thermal reaction profile was used to 
amplify the rbcL and trnH-psbA regions: initial 
denaturation at 95 °C for 3 min followed by 33 cycles of 
denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, 
extension of the primer at 72 °C for 1 min and a final 
extension of 72 °C for 10 min. The following thermal 
reaction profile was used to amplify the matK region: initial 
denaturation at 95 °C for 3 min, then 40 cycles including 
denaturation at 95 °C for 30 s, annealing at 49 °C for 30 s, 
primer extension at 72 °C for 1 min and final extension at 
72 °C for 10 min. The conditions and profiles of PCR 
reactions have been optimized accordingly.  

PCR products were checked by electrophoresis in 1.5% 
(m v-1) agarose gel containing ethidium bromide and a TBE 
buffer (pH 8.0); the gels were visualized under UV. The gel 
was analyzed and archived using the Molecular Imager® 
GelDoc™XR software. Bands were scored and analyzed with 
the Quantity One software (Bio-Rad). The size of the 
products was determined by comparison with a DNA 
ladder (MassRuler, Thermo Scientific). The purified PCR 
products were sequenced on both strands by Genomed 
(Poland) using the PCR primers. The sequences reported in 
this paper have been deposited in the GenBank nucleotide 
sequence database with the accession numbers MG905722 -
MG905751 (Table1). 

 
Barcoding analyses 
The analyzed dataset consisted of 36 nucleotide 

sequences: 30 resulted from DNA sequencing experiments 
performed during this study and 6 were received from 
GenBank. At first the forward and reverse sequences were 
edited and consensus sequences were obtained using Basic 
Local Alignment Tool software. ClustalW and Mega7.1 
software were used to perform multiple sequence 
alignments.  

The genetic variability of each marker was described by 
the total alignment length (bp); the number of  
monomorphic sites; the number of polymorphic sites; the
percentage of polymorphic and monomorphic sites; the 
number of singleton variable sites; the number of parsimony 
informative sites (PIC), nucleotide diversity (Pi); the 
number of haplotypes and the average G+C contents in 
each region using DnaSP6.10.01. 

The barcoding analyses were conducted separately for 
each region and combined in the following arrangement: 
coding region (matK+rbcL) and plastid genome regions 
(matK+rbcL+ trnH-psbA). 

The resolution of each locus was evaluated by the 
Neighbor Joining (NJ) trees and the Maximum Likelihood 
(ML) trees which were built with Mega 7.1 software. 
Tamura-3 parameter model was determined for each locus. 
The reliability branching was tested using the bootstrap 
method with 1000 replications in the NJ and ML analyses.  

The outgroup consisted of the chloroplast genome 
sequences obtained from Avena sativa (NC_027468.1) and 
the in-group consisted of sequences obtained from Triticum 
turgidum (KJ614402.1). 

Results  

As a result of PCR reactions and sequencing, the 
number of matK and rbcL gene sequences as well as the 
trnH-psbA intergenic region sequences, which are used to 
refine the barcoding analysis, were obtained. All the new 
sequences have been deposited in GenBank under accession 
numbers. Twelve nucleotide sequences were analyzed for 
each of the loci: matK, rbcL and trnH-psbA. The matK gene 
had the longest sequence (832 bp) and the trnH-psbA
intergenic region the shortest (589 bp) based on the 
multiple alignments of all sequences obtained from the 
analyzed regions (Table 2). The average GC content was 
33.6% for matK, 43.8% for rbcL and 35.7% for trnH-psbA. 
The trnH-psbA region was the most variable sequence, as it 
was characterized by variability at the level of 81.5%, while 
the least variable was the rbcL region -97.8%. The rbcL
region was characterized by a small number of haplotypes 
(3) and no parsimonious informative sites were observed 
due to its high level of monomorphism. Similarly, the trnH-
psbA region was characterized by the greatest 

Table 1. The list of plant species, origin, accession number, type, life cycle and sequence accessions number included in the study 

Species Origin 
Accession 

number 
Type 

Life 

cycle 

Sequence accession no. 

matK rbcL trnH-psbA 

S. cereale ssp. afghanicum Armenia PI 618662 We A MG905723 MG905722 MG905724 

S. cereale ssp. ancestrale USA PI 445976 We A MG905732 MG905731 MG905733 

S. cereale ssp. cereale Canada PI 590948 C A MG905735 MG905734 MG905736 

S. cereale ssp. segetale Azerbaijan PI 267102 We A MG905741 MG905740 MG905742 

S. cereale ssp. rigidum Turkey PI 618669 We A MG905738 MG905737 MG905739 

S. strictum ssp. africanum Poland 6063 Wi P MG905726 MG905725 MG905727 

S. strictum ssp. anatolicum USA PI 445973 Wi P MG905729 MG905728 MG905730 

S. strictum ssp. strictum Iraq PI 253956 Wi P MG905744 MG905743 MG905745 

S. vavilovii Hungary PI 28842 Wi A MG905750 MG905749 MG905751 

S. sylvestre Poland PI 618676 Wi A MG905747 MG905746 MG905748 

C: cultivated; Wi: wild; We: weedy; A: annual; P: perennial. 
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polymorphism, hence the number of haplotypes was the 
highest (6) and 5 PICs were observed. The intergenic region 
was also characterized by the highest Pi coefficient -0.03, 
and the lowest one was found for the rbcL gene sequence -
0.004 (Table 2). 

Phylogenetic NJ and ML trees were constructed based 
on sequence analysis of 3 regions and their combinations. 
No differences were observed in the topology of trees 
constructed using the aforementioned algorithms. Their 
degree of sampling (bootstrap) was the only difference.  

There was no high variability in nucleotide sequences 
within the matK and rbcL regions. Only 2.2% of the 
sequences showed polymorphism in the rbcL region, while 
6.5% in the matK region. Considering the above, the rbcL
gene was characterized by insufficient sequence variation to 
be used to distinguish rye species and subspecies analyzed by 
the authors (Fig. 2). In turn, it could be observed that Secale 
cereale spp. ancestrale was slightly different from the other 
analyzed species/subspecies of rye, thanks to the analysis 
trees’ topology of matK sequences (Fig. 1). This species 
clustered on a separate branch. It could also be observed that 
the taxon Secale cereale sp. ancestrale is distant from the 
others in the trees obtained using the matK+rbcL
combination (Fig. 4). A different length of the Secale 

57

sylvestre branch was also recorded, which might have been 
caused by a genetic change between the remaining rye 
species, but not sufficiently different that it could be 
separated from the other 8 rye species or subspecies.  

The trnH-psbA region was characterized by the highest 
polymorphism -15.6%, thus the trees obtained based on the 
sequences of this region also most highly discriminated the 
material analyzed by the authors. The analyzed 
species/subspecies were divided into two similarity groups. 
Within the first group, two subgroups were distinguished, 
clustered on separate branches: i) Secale cereale ssp. 
afghanicum and the second more numerous: ii) Secale cereale
ssp. ancestrale, Secale cereale ssp. cereale, Secale cereale ssp. 
rigidum, Secale cereale ssp. segetale and Secale strictum ssp.
africanum. Two subgroups were additionally distinguished 
on separate branches in the second group: i) Secale sylvestre
and Secale strictum ssp. anatolicum and ii) Secale vavilovii
and Secale strictum ssp. strictum (Fig. 3).  

The use of the matK and rbcL combination with trnH-
psbA increased the efficiency of the barcode analysis. This 
was due to the fact that the trnH-psbA region was 
characterized by a high genetic variability in closely related 
taxa analyzed in the above experiments. The analyzed 
species/subspecies were divided into two similarity groups, 

Table 2. Molecular characteristic of the three chloroplast loci evaluated for genus Secale 

Barcode 
Total alignment 

length (bp) 

Number of  

monomorphic sites 

Number of 

polymorphic 

sites 

Number of parsimony 

informative sites 

(PIC) 

Number of  

singleton 

variable sites 

Number of 

haplotypes 

Nucleotide 

diversity (Pi) 

matK 832 778 54 2 52 5 0.011 

rbcL 624 610 14 0 14 3 0.004 

trnH-psbA 589 480 92 5 87 6 0.030 

 

Fig. 1. Cladogram for matK sequences for Secale species and 
subspecies generated by the Neighbor-Joining method’s. The 
bootstrap values are shown under the branches 

 

Fig. 2. Cladogram for rbcL sequences for Secale species and 
subspecies generated by the Neighbor-Joining method’s 
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in which subgroups were distinguished. Three similarity 
subgroups were identified in the first group: i) Secale 
vavilovii; ii) Secale cereale spp. ancestrale; iii) Secale sylvestre,
Secale cereale ssp. rigidum, Secale strictum ssp. strictum and 
Secale cereale ssp. segetale. Two subgroups were identified in 
the first group: i) Secale cereale ssp. afghanicum and Secale 
cereale ssp. cereale; ii) Secale strictum ssp. africanum and 
Secale strictum ssp. anatolicum (Fig. 5). 

Discussion 

According to the CBOL plant working group, an ideal 
DNA barcode needs to have the following features: capacity 
of amplification with universal primers, high amplification 
and sequencing efficiency, and genetic variation that is 
sufficiently high to distinguish sequences at the species level, 
but also sufficiently conservative among individuals of the 
same species (Hebert et al., 2003; Cowan et al., 2006; 
CBOL Plant Working Group, 2009). 

Evaluation of universal applicability by PCR 
quantification and sequencing success is the first step in 
determining the suitability of a given DNA fragment as a 
barcode.  

In this respect, all analyzed regions (matK, rbcL and 
trnH-psbA) amplified effectively, which allowed for simple 
and high-quality sequencing.  

The amplification of the trnH-psbA region was also 
successful, despite the fact that many authors reject this 
region as a barcode because of its length (>1000 bp) and 
difficulties in bi-directional sequencing (CBOL Plant 
Working Group, 2009; Hollingsworth et al., 2009). The 
amplicons obtained in our experiments were shorter (about 
600 bp), which allowed for effective sequencing. Similar 
results were obtained for other groups of terrestrial plants, 
where the amplification of the trnH-psbA region and the 
sequencing quality was sufficiently high to consider it a 
barcode (Kress et al., 2009; Tripathi et al., 2013; Bieniek et 
al., 2015; Su et al., 2016).  

In turn, many studies have indicated that matK is a key 
marker discriminating specific groups (Newmaster et al., 
2009; De Mattia et al., 2011), although many authors 
questioned the usefulness of this gene as a barcode due to 
poor amplification and sequencing efficiency and problems 

  

Fig. 3. Cladogram for trnH-psbA for Secale species and 
subspecies generated by the Neighbor-Joining method’s. The 
bootstrap values are shown under the branches 
 

Fig. 4. Cladogram for matK+rbcL for Secale species and 
subspecies generated by the Neighbor-Joining method’s. The 
bootstrap values are shown under the branches 
 

 

Fig. 5. Cladogram for matK+rbcL+trnH-psbA for Secale 

species and subspecies generated by the Neighbor-Joining 
method’s. The bootstrap values are shown under the branches 
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related to primers’ universality (Sass et al., 2007; Roy et al., 
2010; Kelly et al., 2010; Du et al., 2011; Yan et al., 2011; 
Theodoridis et al., 2012). The research presented in the 
study indicates that despite PCR and sequencing efficiency, 
unfortunately, this region can not be considered as an 
effective rye barcode. Analyses involving this sequence 
showed only 6.5% polymorphism in the studied taxa. 

However, in terms of molecular variability, rbcL was the 
most conservative sequence among the three analyzed 
regions, as indicated by the lowest number of polymorphic 
sites and the obtained haplotypes (Fig. 2). This was also 
confirmed by other authors (Fazekas et al., 2008; 
Zimmermann et al., 2013; Bolson et al., 2015; Bieniek et al., 
2015; Gamache and Sun, 2015). 

Phylogenetic analysis is one of the most effective 
methods to determine the suitability of a DNA region as a 
barcode, because it should detect species-specific clusters. 
Unfortunately, it is complicated in rye, because the 
phylogenetic relationships between Secale species remain 
unclear, despite the large number of analyses. A division of 
the genus Secale even into 15 different species has been 
adopted (Delipavlov 1962), while Frederiksen and Petersen 
(1998) recognized only three Secale species: Secale sylvestre,
Secale strictum and S. cereale. The classification system of the 
American Germplasm Resources Information Network 
(GRIN, http://www.arsgrin.gov) currently includes four 
species in the genus Secale: annual S. cereale L., annual S. 
sylvestre Host and S. vavilovii Grossh and perennial S. 
strictum (Presl.) Presl. (syn. S. montanum) (Spencer and 
Hawkes 1980; DeBustos and Jouve 2002). Moreover, S. 
cereale also comprises 8 subspecies, S. strictum - 5, and S. 
cereale ssp. cereale is the only cultivated species. 

The differences in the classification of the genus Secale
result from the use of various experimental methods, such as 
isoenzyme analyzes (Vences et al. 1987a,b), RAPD (Del
Pozo et al., 1995), ITS rDNA analyses (Reddy et al. 1990; 
Cuadrado and Jouve 2002), thin-layer chromatography 
(Dedio et al. 1969), ITS rDNA region length analyses 
(Reddy et al. 1990), restriction fragment length 
polymorphism (RFLP) of the chloroplast genome (Murai et 
al. 1989) and cpDNA variation analyses (Petersen and 
Doebley 1993), microsatellite sequence analyses (Shang et 
al., 2006), but also traditional morphological and 
cytogenetic methods.  

None of the regions used in the study allowed the 
division of rye species and subspecies according to the 
adopted classification of the genus Secale. The rbcL region 
did not differentiate the analyzed taxa (Fig. 2), because the 
obtained sequences were very similar, with only 14 
polymorphic sites (Table 2).  

Similar results were obtained by Gamache and Sun 
(2015), who identified species from the genus 
Pseudoroegneria. As regards the genus Panicum, the rbcL
gene alone was also insufficient to identify individual 
species, similarly as the matK gene (Zimmermann et al., 
2013). Only the combination of results of these two regions 
was sufficient for analysis. In turn, Zhang et al. (2011) 
showed that individual plant species can be distinguish by 
analyzing this region (including Arabidopsis thaliana, Oryza 
sativa subsp. japonica or Zea mays). This region also 

demonstrated reasonably good effectiveness at lower 
taxonomic levels in Hordeum (Bieniek et al., 2015; 
Gamache and Sun, 2015). Bieniek et al. (2015) identified 
Hordeum bulbosum or H. bogdani using the rbcL region. 

Our research shows that the matK gene sequences are 
also highly similar in the analyzed taxa (54 polymorphic 
sites have been identified) and allow only the identification 
of Secale cereale ssp. ancestrale. Bieniek et al. (2015) obtained 
different results, demonstrating high species identification 
capacity, but also for the genus, using the matK gene alone 
in the genera Elymus, Loptiopyrum, Pseudoroegneria and 
Thinopyrum. Similarly, the identification of species of the 
genus Panicum using the rbcL and matK genes individually 
discriminated species, despite the low number of SNPs 
(Hunt et al., 2014). These results are in contradiction with 
the study of Zimmerman et al. (2013) in relation to the 
genus Panicum. This might result from a larger number of 
species selected for analysis – 9 (Zimmermann et al., 2013) 
and 24 (Hunt et al., 2014), respectively. 

The intergenic trnH-psbA region demonstrated the 
highest species identification capacity in our study among all 
3 regions used autonomously. Six haplotypes were 
distinguished, however, sequence analysis of this region 
allowed to identify rye only at the species level. This region 
was insufficient for the identification of rye to subspecies 
among S. cereale and S. strictum species (Fig. 3). 

Only the combination of matK and rbcL with trnH-
psbA increased the efficiency of barcode analysis, although in 
this case there were also some discrepancies with the 
adopted classification (Fig. 5).  

S. cereale ssp. cereale species were dispersed within both 
groups. S. vavilovii species was in the S. cereale, S. strictum
and S. sylvestre species group (NJ), or S. cereale and S.
africanum, Secale strictum ssp. anatolicum. The result of our 
analysis was partly consistent with the classification of 
Frederiksen and Petersen (1998), who identified only three 
species within the genus Secale: S. sylvestre, S. strictum and S. 
cereale and included S. vavilovii to S. cereale. Similarly, 
Bolibok-Brągoszewska et al. (2014) classified S. vavilovii as a 
subspecies of S. cereale. Shang and et al. (2006) reached 
similar conclusions, indicating high similarity between these 
species.  

S. sylvestre is highly similar to S. cereale ssp. segetale. This 
was confirmed by previous results (Skuza et al., 2007) 
obtained in the RFLP analysis of mitochondrial genes. 
However, the obtained results were not consistent with the 
current classification of the genus Secale based on many 
nuclear molecular markers. Although Ren et al. (2011) did 
not classify S. sylvestre as a separate group, nevertheless, they 
claimed, on the basis of their research, that it was more 
related to S. strictum ssp. africanum and S. strictum ssp. 
anatolicum.  

In turn, Bolibok-Brągoszewska et al. (2014) classified S. 
sylvestre to a separate taxon. Ren et al. (2011) obtained 
different results based on microsatellite analysis. They 
showed similarity of S. sylvestre to S. strictum ssp. africanum
and anatolicum. Skuza et al. (2007) in turn classified S. 
sylvestre together with S. cereale ssp. segetale based on 
mtDNA analysis.  
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S. sylvestre along with S. vavilovii are the only species 
that do not generate hybrids, although both are annual and 
self-pollinating (Singh, 1975). These results would support 
the suggestion of Khush (1962) that S. sylvestre should be 
placed in a separate silvestria section. However, the research 
carried out in the present work suggests that this species 
should be included together with S. segetale.  

Our results partially confirmed the very close 
relationship between S. sylvestre and S. segetale species and 
also supported the exclusion of S. vavilovii as a separate 
species.  

The strictum species group is heterogeneous and shows 
similarity to S. cereale ssp. ancestrale similarly to the work of 
Ren (2011) and to S. afghanicum. The analysis showed low 
similarity of S. strictum ssp. africanum and S. strictum ssp.
strictum species, contrary to the currently adopted 
classification. However, they are consistent with the ISSR 
analyses, indicating a close relationship between S. strictum 
ssp. africanum and S. strictum ssp. anatolicum (Ren et al., 
2011). Genetic diversity in the evolutionary process was 
lower in the strictum group than between perennial and
annual forms and species. In addition, it has been shown 
that perennial forms are morphologically similar and cross 
easily to form hybrids (Spencer and Hawkes 1980). 

 

Conclusions 

The present study is the first to analyze selected rye 
species and subspecies, in which the usefulness of the 
combinations of the plastid rbcL and matK coding regions 
and intergenic trnH-psbA region for DNA barcoding was 
assessed. The results confirm that the use of matK and rbcL
is insufficient for DNA barcoding in rye species, and better 
discrimination within the genus Secale can be obtained only 
in combination with the non-coding trnH-psbA sequence. 
Our results also indicate the need to use a different region, 
e.g., the previously proposed ITS2 supported by the 
intergenic trnH-psbA region, in order to correctly identify 
rye species (Chen et al., 2010; Roy et al., 2010). 
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